Handbook Supplement
Using HP Instrument BASIC
with the HP 8711B/12B/13B/14B
RF Network Analyzers

KA cacicanc

T HP Part No. 08712-90006
N Printed in USA February 1995

Microwave Instruments Division

......

pe

© Copyright Hewlett-Packard Company 1995

All Rights Reserved. Reproduction, adaptation, or translation without prior written
periission is prohibited, except as allowed under the copyright laws.

1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, USA

Contents

L]
1. Introduction
Overview of HP Instrument BASIC 1-2
Using HP Instrument BASIC 1-2
Typographical Conventions 1-3
2. Recording Programs
Keystroke Recording 2-1
What is Keystroke Recordmg? 2-1
IBASIC Programs and the HP-IB Buffer 2-2
What’s in 2 Recorded Program 2-2
‘The OQOUTPUT Statement Coe . 2-3
The ASSIGN Statement R 2-3
SCPI Muemonics e e e 2-3
How Recording Works 2-4
Operations That Do Not Record 2-5
Front Panel Operations Without Mnemonics, . 2-5
HP Instrument BASIC Operations, 2-6
Operations Requiring Additional Programming 2-6
Synchronization L. L .o 2-6
Active Control of the HP IB Interface 2-7
Mnemonics With No Corresponding Front Panel Operation 2-7
Avoiding Recording Errors 2-8
Use Instrument Preset oo 2-8
Specifically Select Parameters L. 2-8
Use HP-IB Echo e e 2-9
3. Running, Pausing and Stopping Programs
Starting Programs Automatically e e 3-1
Running and Continuing a Program 3-1
Pausinga Programo oo o o0 3-2
Stopping a Programo 3-3
4. Saving and Recalling Prograims
[SelectingaDisk e e e e e e 4-2
Saving a Program e e e e e e e e e 4-2
AUTOST Programs e e e e e e 4-;
Recalling a Program e e e e e e e e 4-3

Contents-1

5. Developing Programs

i External Editorso Ce e 5-2

HP BASIC e e e e e e e e e C e e e 5-2

ASCII Word Processors 5-2

Editing Your Program Using Bdiz 5-3

The IBASIC Editor Softkeys o000 5-4

Recording into an Existing Program C e e e e e e e e e e e e e e 5-4

Editing with an External Keyboard e e e e e e e e 5-5

Inserting Lines e e e e e e e e e 5-6

Editing Lines e e e e e e e e e e e e e e e 5-6

Entering Program Lines e e e e e e e e 5-6

Editing from the Front Panel e e e e e 5-7

Character Entry e e e e e e e e 5-7

“ The Label Window C e e e e e e e 5-7

Inserting Iines b e e e e e e e e e 3-8

Removiag Program Text C e e e e e e e e 3-8

L Deleting Characters « . .. e e e o 5-8

Deleting Lines e e e e e e e e e e e e e 5-8

]i{ecaihng a Deieted Line e e e e . 5-9

o , Moving, and Indenting Lines 39

L Using IBASIC BREDIAY v o e e e e e e e 5-10

T Using BERTARAER oe e e 5-12
6. Debugging Programs
' Setting Breakpoints e e e e e e 6-2

Examining Variables e e e e e e e e e 6-2

‘Examining Strings e e e e e e e e e 6-3

Examining Arrays e e e e e e e e e 6-3

Displaying the Last Error Encountered e e e e e e e e e e e e 6-4

7. Graphics and Display Techniques

Using the Display Partitions e e e e 7-1

- Allocating Display Partitions e e e e 7-2

b De-Allocating Display Partitions 7-3

Operation with No Display Partition - 7-3

o Displaying Text e e e e 7-4

Pop-up Message Wmdows and Custom Annotatlons e e e e e e e 7-5

""" Graphics Initialization and Scaling 7-5

| Using Graphies e e e e e e e e e e e e e e 7-6

Drawing Figures C e e e e C e e e e e e e e e 7-7

» Graphics Exceptionso o 0o 7-9

GRID, RECTANGLE, POLYGON and POLYLINE scahng d1ﬁ'erences . 7-9

L Labeling with Different Partitions 7-10

; SCPI Graphics Commands C e e e 7-11

L.

Contents-2

8. Interfacing with External Devices

Communication with Devices e e e e e e e 8-1
HP-IB Device Selectors e e e e e e e e 8-1
Moving Data Through the HP-IB, 8-2
General Structure of the HP-IB 8-3

The System Controller e e e e e e 8-3
Using the Serial and Parallel Ports 8-3
Using the Analyzer Ports in IBASIC programs e e e e e e e 8-4

Writeable Ports e e e e e - 8-4

Readable Ports [I=READIOCA,B)] 8-4

General Bus Management 8.5

REMOTE o o o e e 8-6

Host Instrument L 8-6
LOCALLOCKOUT« . . Ce 8-6
Host Instrament e 8-6
LOCAL o o e Co 8-7
Host Instrument Ce e 8-7
TRIGGER o o oo Ce e 8-7
Host Instrument Coe 8-7
CLEAR o . i o e 8-7
Host Instrumento L0 Coe B-7
ABORT o s Ce 8-8
Aborting the Internal Bus Coe e 8-8
HP-IB Service Requests Ce 8-8
Setting Up and Enabling SRQ Interrupts C e 8-8
Servicing SRQ Interrupts Ce 8-9
Exampleo 0oL oo, N 8-9
Conducting a Serial Poll Coe 8-10
Passing and Regaining Control C e 8-10

The IBASIC HP-IB Model Coe e 8-11
External and Internal Busses, 811
Service Request Indicators C e e 8-11
IBASIC as the Active Controller C e e 8.12
Passing Active Control to the Instrument Coe e 8-12
IBASIC as a Non-Active Controller Co e 813

Interfacing with an External Controller Coe e 8-13
Synchronizing IBASIC with an External Controller C e 8-14

Using OUTPUT and ENTER statements G 8-14

Using Status information, Ce 8-14

Design Rules Ce 8-15
Transferring Data Between Programs Coe e 8-15

Using OUTPUT and ENTER statements Coe e 8-15

Setting and Querying Variables Coe e 8-16
Downloading and Uploading Programs Ce 8-17

Downloading 0L Coe e 8-17

Uploading, C 8-18

Contents-3

9. Using Subprograms

10.

11.

User-Created Subprograms
Built-In High-Speed Subprograms L. ..

Example Programso 000

Avoiding Multiple Loads of Subprograms
IBASYIC Keyword Summary

Example Programs
Example Program Swmmaries oL

DATA_EXT — Data transfer between internal and external programs . . .
DATA_INT — Data transfer between internal and external programs

DOWNLOAD — Download program to analyzer
DRAWS71X — Drawing setup diagrams
DUALCTRL — Two controller cperation
REPORT — Using the parallel port o
TRICTRL — External controller with local IBASIC controllers
UPLOAD — Upload program from analyzer
USERBEG — Set up user-defi

USERBEGI -— The defanlt

USER-BIT — Using the USER bito
USERKEYS — Customized softkeys
BARCODE, STATS, DATALOG — Bar Code Programs

ADJ_110 — Automated procedure for service adjustment #110 (B* amplitude

correction) L. L e o e e e e

Example Program Listings

DATA_EXT — Data transfer between internal and external programs . . .
DATA_INT — Data transfer between internal and external programs

DOWNLOAD — Download program to analyzer
DRAWS71X — Drawing setup diagrams
DUALCTRL — Two controller operation
REPORT - Using the parallel port e e e e e e
TRICTRL — External controller with local IBASIC controllers
UPLOAD — Upload program from analyzer
USERBEG — Set up user-define

USERBEGI — The default
USERBEG2 — Fast recall of |
USER-BIT — Using the USER bit
USERKEYS — Customized softkeys
BARCODE — Using Bar Code Reader
STATS — Using Bar Code Reader
DATALOG ~ Using Bar Code Reader

Index

Contents-4

9-1
9-2
9-4

Figures

4-1. The Secreem Lo 4-2

5-1. The HP IBASIC Program Editor 5-3

52. The PCKeyboard 5-5

5-3. The IBASIC display partitions« 5-11

7-1. Display partitions on the analyzer 7-1

7-2. Using INPUT with no display partition 7-3

7-3. Prinfing to a display partition 7-4

7-4. Pixel Dimensions with Available Display Partitions 7-6

7-5. “*HELP” programoutpat 7-8

11-1. Sample Bar Codes 11-54
Tables |

S 0 S

5-1. IBASIC Display Partitions 5-10

7-1. IBASIC Display Partitions 7-2

7-2. SCPI Graphics Commands 7-12

10-1. Alpbabetical List of IBASIC Keywords i0-1

10-2. Categorical List of IBASIC Keywords 10-8

Contents-5

Introduction

A built-in HP Instrument BASIC (IBASIC) controller (option 1C2) can be ordered with the
analyzer. An upgrade (HP model no. 86224B) is also available to add the controller to an
analyzer that was not purchased with this option.

This manual describes creating and using IBASIC software on the analyzer. It demonstrates
how to use IBASIC’s programming, editing and debugging features. If also describes how
to save and recall programs and how certain instrument-specific IBASIC features are
implemented in the analyzer.

The reader should become familiar with the operation of the analyzer before programming it.
This manual introduces the IBASIC operating and programming environment and provides
examples of intermediate and advanced IBASIC programs. It assumes familiarity with the
analyzer and HP BASIC.

Related information can be found in the following references. Contact a Hewlett-Packard sales
or service office if you wish to order any of these documents. A list of HP sales and service
offices can be found in the “Specifications” chapter of your User’s Guide.

m Information on the IBASIC language, including keyword descriptions, error messages,
interface specifics and programming techniques is available in the HP Instrument BASIC
Users Handbook.

m Information on operating the analyzer is available in the analyzer’s User’s Guide.

m Information on programming the analyzer, including example programs, is available in the
analyzer’s Programmer’s Guide.

m Information on the analyzer’s HP-IB command munemonics is also available in the analyzer’s
Programmer’s Guide.

w Information on the SCPI {Standard Commands for Programmable Instruments)
programming language is available in 4 Beginners Guide to SCFPI.

m Information on using the HP-IB is available in the Tutorial Description of the
Hewlett-Packard Interface Bus.

introduction 1-1

Overview of HP Instrument BASIC

When installed in your analyzer, HP Instrument BASIC (IBASIC) can be used for a wide
range of applications, from simple recording and playback of measurement sequences to
remote control of other instruments. IBASIC is a complete language with over 200 keywords.

IBASIC is a complete system controller residing inside your analyzer. It communicates with
the analyzer via HP-IB commands over an internal interface bus (select code 8). It can also
communicate with other instruments, computers, and peripherals using the external HP-IB
interface (select code 7) or the serial (select code 9) or parallel (select code 15) I/0O ports.

Note The analyzer can also be controlled by an external controller. It has a factory
default external HP-IB address of 16. When using IBASIC to control other
instruments, no other device should use the same address.

The external HP-IB address can b
keys under the (SYSTEM OPTIONS)]
"SYST:COMM:GPIB ADDRY.

nged using either the front panel
- menu, or the SCPI mnemonic

Using HP Instrument BASIC

You need not be proficient in a programming language to successfully use HP Instrument
BASIC (IBASIC). In keystroke recording mode, IBASIC automatically builds an executable
program by capturing measurement sequences as they are performed. With little or no editing
of thege program lines, you can immediately put your program to work controiling and
automating your analyzer.

IBASIC’s programming interface includes an editor. Softkeys are available o allow you to run
or continue a program or configure the display.

The IBASIC command set is a subset of the command set of HP BASIC. In fact, IBASIC
programs can be run on any HP BASIC workstation with very few changes. When an external
PC keyboard (with a DIN connector) is connected to the analyzer, the IBASIC user interface
emulates the user interface of the HP BASIC. The PC keyboard can be used for command
entry, editing and program inputs.

Using IBASIC, you can:

m Create on screen graphics

m Control other instruments and peripherals
m Create interactive prompts

» Simplify keystrokes with the key

m Keystroke record programs

m Run applications

IBASIC also works in conjunction with an external controller which can download and run
programs, query variables and respond to Service Requests (SRQs).

1-2 Introduction

Typographical Conventions

The following conventions are used in this manual when referring to various parts of the HP
Instrument BASIC and analyzer operation environments:

The name of a hardkey on the front panel of the analyzer. This notation
is also used to represent keys on an external keyboard connected to the
analyzer’s DIN interface.

The label of a softkey.

Upper case selection in a softkey indicates the state AFTER the softkey
is pressed.

A series of hardkeys and softkeys represents the path to a given softkey
or meni. '

<element> Angle brackets are used to signify a syntax element in a statement.

Introduction 1-3

Recording Programs

IBASIC programs for the analyzer can be created from the instrument’s front panel using
an external PC keyboard (option 1CL) on an HP controller running HP BASIC, or on a
workstation or PC using a text editor.

Keystroke recording, described in this chapter, is ideal for creating simple programs or
measurement sequences for instrument control. If a programn requires data processing, decision
making, or prompts for an operator or graphical setup diagrams, these must be entered using
another technique. Alternative methods of program development may be used to supplement
keystroke recording and create more sophisticated programs. These methods are covered in
Chapter 5, “Deveioping Programs”.

Keystroke Recording

Of all the available methods of creating IBASIC programs, keystroke recording is by far the
easiest. It reguires only a couple of steps to set up and run, and can be accomplished with
very little knowledge of programming.

What is Keystroke Recording?

Keystroke recording is a way to antomatically create IBASIC measurement sequence
programs. To enable recording, simply press (SYSTEM OPTIONS]
Then press the normal key sequences of a measurement on the analyzer. Press
(sYsTEM OPTIONS)

program can then be run by pressing

IBASIC programs communicate with the analyzer over an internal bus. They use the same set
of commands used by external controllers for remote operation of the instrument. Keystroke
recording works by finding the bus command, called a SCPI mnemonic, that fits each
operation performed from the front panel and then building a program line to perform that
operation when executed. All program lines built by keystroke recording are entered into

the analyzer’s program buffer. If the buffer contains no existing lines, a complete executable
program will be created. If there is a program in the buffer when recording is turned on,

the recorded statements are simply inserted into the existing program. Refer to Chapter 3,
“Developing Programs,” for a description of how to record into existing programs.

Recording Programs 2-1

......

IBASIC Programs and the HP-IB Buffer
Recorded programs work by sending HP-IB commands to the instrument.

These commands are queued into an input buffer by the instrument. An IBASIC program
generally outputs the commands much faster than the instrument can execute them. This
often causes the program to complete while the instrument is still executing commands in the
input buffer. The insirument continues processing these commands until the buffer is empty.

This may have some side-effects if you are not aware of this interaction. For example, it may
not be immediately obvious that the program has actually finished, since the instrument is
still functioning “remotely.” This could cause confusion if you try to pause and continue a
program that has actually completed.

You can clear the buffer from within your program by inserting the statement CLEAR 8 at the
beginning of your program (see Chapter 5 for information on editing programs).

Another side-effect of the speed with which the analyzer processes commands is that it is
possible for a command to execute before a previous command has completed execution. The
most common example of this is a data query that executes before a measurement sweep is
complete. This interaction can lead to erroneous data being collected. For more information
on synchronizing the execution of commands, refer to “Synchronizing the Analyzer and a
Controller” chapter in the Programmer’s Guide.

What's in a Recorded Program

If you look at any program created using keystroke recording you will find that it is composed
of three fundamental IBASIC statements: ASSIGN, OUTPUT and END. The following simple
program demonstrates these statements:

1 ASSIGN @Rfna TO 800
2 DUTPUT @Rfna;"SOUR1:POW -10 dBm"
10 END

The ASSIGN and END statements are automatically created when keystroke recording is used to
create a new program (as opposed to modifying an existing one).

There will only be one ASSIGHN statement at the beginning of a program and one END
statement at the end, but in a typical program there will be many OUTPUT statements. Since
the QUTPUT statement does the actual work of controlling the analyzer, let’s take a closer look
at how it is used.

Note ‘The ASSIGN statement, which is automatically created, will vary depending on
the model of analyzer vou have:
HP 8711AB ASSIGN eHp8711 TO 80C
HP 87128 ASSIGN @Hp8712 T0 800
HP 87138 ASSTGN @Hp8T13 TO 800
HP 8714B ASSIGE Q@Hp8714 TO 800

2-2 Recording Programs

The QUTPUT Statement
The IBASIC statement
OUTPUT <destination>; <data>

tells the internal computer to send some information <data> tc a device at a specific address
<destination>. The destination can be a device selector number (example: OUTPUT 800}, or
a name representing a number, called a path name (example: OUTPUT @Rfna}. The data can
take several forms but in recorded IBASIC programs it is a string containing commands for
the instrument (a mnemonic).

Although the OUTPUT command is very flexible it is used only one way when generated by a
recording. The following represents a typical OUTPUT command from a recording session:

OUTPUT @Rfna;"SOURL:POW -10 dBm"

Notice that the OUTPUT command is followed by a name representing a device selector (@Rfna),
followed by a semicolon and the data ("SOUR1:PCW -10 dBm").

The ASSIGN Statement

The destination in an OUTPUT statement specifies the address of the device. In recorded
programs this address is represented by the I/O path name @Rfra. The following line appears
in all recorded programs before any OUTPUT statements:

ASSIGN @Rfna to 800

The ASSIGH statement allows you to substitute an I/0 path name (a variable preceded by
the @ symbol) for a device selector number. Therefore, after the above ASSIGK statement, the
program line

OQUTPUT @Rfna;"SOURL1:POW ~10 dBm"
is equivalent to
DUTPUT 800;"SOURL: POW ~10 dBm"

The device selector 800 specifies the host instrument as the destination of any data sent by
the OUTPUT command. The program communicates with the analyzer via select code 8, the
internal HP-IB interface, which is only used for communication between IBASIC programs
and the analyzer. The analyzer will respond to any address on the internal interface from 800
to 899 (800 is typically used).

SCPI Mnemonics

The data sent to the analyzer by the OUTPUT command is called a SCPI (Standard Commands
for Programmable Instruments) mnemonic and is found in quotes following the device selector
path name and semicolon:

QUTPUT @Rfna;"SOURL:POW ~10 dBm"

SCPI is a standard instrument control programming language providing commands that are
common from one product to another, reducing the number of “device specific” commands. It

Recording Programs 2.3

uses easy to learn, self explanatory syntax that provides fiexibility for both novice and expert
programmers.

The SCPI mnemonic codes used by IBASIC are the same ones used to control the instrament
remotely via an external computer. External computers communicate with the analyzer over
the external HP-IB bus while IBASIC programs communicate with it over the internal bus. In
our example, the mnemonic "SOURL:POW -10 dBm" tells the instrument to set the source power
to -10 dBm.

For more information on HP-IB interfacing using IBASIC refer to Chapter 8, “Interfacing with
the HP-IB.” The SCPI mnemonics for the analyzer are documented in the Programmer’s
Guide.

How Recording Works

To fully understand IBASIC recording, it is important to understand the relationship between
front panel instrument operation and the program that is generated to emulate that operation.

Note SCPI mnemonics entered in a program during a recording session do not have
a one-to-one correlation with the actual keys that are pressed during that
pesgion.

The fact that the generated SCPI mnemonics do not exactly correspond to the keys actually
pressed is important to remember. As you press a sequence of keys to perform an operation,
the corresponding SCPI mnemonic for that operation is generated. The operation may take
one keystroke or several, but the mnemonic is not generated until after a valid sequence of
keystrokes is completed.

In other words, it is the functional operation of the instrument that is recorded as a
mnemonic, not the keystrokes that it takes to perform that operation.

For example, recording the simple key sequence: (POWER 0 requires six
keystrokes and produces only one mnemonic, "SOURL : POW Bm", which is generated after
the sequence is completed. This is then automatically formed into the command:

OUTPUT @Rfna; ' 'SCURL:POW -10 dBm"

and inserted into the program.

‘This means that if you accidentally press the wrong key in a sequence, it may not show
up in the recorded program. Additionally, you cannot exactly mimic keystrokes to leave
the instrument in a specific front panel state, unless it is a state that appears as a natural
consequence of a completed operation.

As shown in the above example, pressing the hardkey in a recording session has the
effect of bringing up the menu, but does not, by itself, generate a program line. You
could not therefore leave the instrument with the menu displayed.

2-4 Recording Programs

Operations That Do Not Record

Although keystroke recording works automatically in most sitzations, there are some
operations that cannot be captured or can only be partially captured using this method. .
These generally fall into one of the following areas:

m Front panel operations with no corresponding SCPI mnemonic {such as traasitional key
gequences).

m IBASIC front panel operations (such as some of the softkey operations found under the
(sysTEM OPTIONS)

m Operations requiring additional programming steps (such as passing control of the IIP-IB to
the instrument for hardcopy output).

m HP-IB operations with no front panel equivalent (such as HP-IB guery commands or data
transfer).

= Service menu keys (in general)

Note Do not recall programs in keystroke record mode; doing so will overwrite
previpusly recorded program steps.

Front Panel Operations Without Mnemonics _
There are some areas of front panel operation which have no corresponding SCPI mnemonics.

w Most operations on the front panel that require numeric eniry allow you to use the knob to
increment or decrement the current value. This will not record as a program line. You must
always use the numeric keypad or step keys to enter any value if you want the operation to
be recorded.

w During a measurement sequence it may take several key presses to cause an operation that
will generate a mnemonic. The transitional sequences between actual instrument events are
not recordable. For example: pressing the key displays the scale numeric entry, but
nothing is recorded until you enter a value for the scale parameter.

m Any default states you setup prior to recording or encounter while recording (and
consequently do not select) are not recorded.

m Use of step keys are not recommended because the results may depend on the function’s
step size, which may change as other parameters change.

Note Instrument states that are not specifically selected or changed are not
recorded.

Since these default states are not recorded, you must either actively select them to generate
a program statement or make sure the instrument is in the same exact state when the
program. is run as when it was recorded. This is discussed further in the “Avoiding
Recording Errors” section of this chapter.

Recording Programs 2.5

HP Instrument BASIC Operations

ment cannot be recorded. Operations on

programs, such as and (SAVE RECALL]

can, however, record display partitions and all other save and recall
do with IBASIC programs.

Although IBASIC operations cannot be recorded, many do have corresponding SCPI
mnemonics that allow an external controller to control and communicate with internal
IBASIC programs. For more information refer to Chapter 8, “Interfacing with the HP-1B.”

Some softkeys under the {SYSTEM OPTIONS)

do not record. You
operations not having to

Operations Requiring Additional Programming

Some operations that work well when performed from the front panel have circumstances
that require special attention when used in a program. This is due to two kinds of problems,
synchronization and active control.

Synchronization

Timing and synchronization must always be anticipated where one event must complete before
another can occur. One example of this is when you need to detect a state in the instrument
before issuing the next command. For example, suppose you want your program to perform a
limit test on data, but only after a sweep has been completed. You can record the command
to perform the limit test by pressing key sequences. However, to detect when the instrument
has completed a sweep, you must edit the program and include a routine that waits for a
status register to indicate the end of the sweep.

Note Synchronization is oaly a problem with overlapped commands {such as the
command to trigger a sweep), that is commands that don’t hold off the
processing of subsequent commands. The analyzer adds an extra command
*WAT when an overlapped command is created using keystroke recording.
*WAT prevents the analyzer from executing any further commands until the
overlapped command has finished. For more information on synchronization
see the “Synchronizing the Analyzer and a Controller” chapter in the
Programmer’s Guide.

2-6 Recording Programs

Active Control of the HP-IB Interface

Some operations require the analyzer to be the active controller on the external HP-IB bus.
‘This generally means that the analyzer must be the System Controller {or active control
must be passed to it from an external controller, if one is connected). When an IBASIC
program begins running, however, the instrument’s active control of the external interface is
automatically passed to the program, so active control must be passed back to the analyzer
before these operations can be performed.

These operations include ail of the following actions when they are directed to HP-IB devices.
Note that active control of the HP-IB interface is only a problem if that bus is being used.
Hardcopy output to devices on the serial or parallel ports do not require control of the HP-IB.

HARD COPY
HARD COPY
SAVE RECALL

SAVE RECALL

(to external disk}
SAVE RECALL

SAVE RECALL to external disk)

You can keystroke record any of these operations but you will not be able to successfully run
the program that is generated. You will need to enter the program lines necessary to first pass
control to the analyzer and then wait for control to be passed back to the program.

See the “Passing and Regaining Control” section of Chapter 8 for an example of passing
control to the analyzer. '

Mnemonics With No Corresponding Front Panel Operation

Several of the analyzer SCPI mnemonies for the instrument perform operations that are
not available from the front panel and which, therefore, cannot be recorded. These include
operations such as querying instrument status, transferring data over HP-IB, setting and
clearing status registers and general HP-IB housekeeping.

These operations are useful for the more advanced HP-IB programmer using IBASIC. Because
they fall outside the direct operating realm of the analyzer, they cannot be recorded. They
can be added to a recorded program using the built-in editor or another editing environment.
See the Programmer’s Guide for a complete description of the analyzer’s HP-IB command set.
See also “Built-In High Speed Subprograms” in Chapter 9.

Recording Programs 2-7

Avoiding Recording Errors

Use Instrument Preset

In most cases, it is recommended that the key /operation be recorded as the first
keystroke recorded. This sets the instrument to its defanit state and avoids the risk of
creating a program that depends on instrument setfings that were present at the time of the
keystroke recording but may be different when the program is ran.

You can include the command to perform a preset in your program by pressing
immediately after turning recording on. This inserts the following line prior to all other
QUTPUT statements in your program:

QUTPUT @Rfna;"SYST:PRES;*WATL"

Specifically Select Parameters

If you do not want the instrument preset before a recorded program is run (for example, you
may be recording a section of a larger measurement sequence), be sure to specifically activate
every instrument setting that you will need in your automated sequence. For example, if you
want the data format to be Log Mag, press and then
Mag is already the default setting. This will generate a program line to specifically set the
data format to Log Mag.

In some cases you may have to select another setting first and then re-select the original
setting in order to generate the correct program line. For example, if you want to generate
a program line to set the sweep trigger to Continuous, and di hat it is already
set to Continuous when you start recording, press first — then press

You can easily remove unwanted program lines generated by this procedure in

Note Do not rely on the step keys or front panel knobs to set parameters. Use
of step keys are not recommended because the results may depend on the
function’s step size, which may change as other parameters change.

2-8 Recording Programs

Use HP-IB Echo

HP-1B Echo is a useful analyzer feature that allows vou to view the SCPI mnemonic or
mnemonics cotresponding to atio ted £ he front panel. To turn or HP-IB
Echo, press (SYSTEM oPTIONS] | After doing this you will see a
mnemonic appear in a dialogue box on the screen as you complete any key sequence that has
a matching SCPI mnemonic,

This is the exact mnemonic that is generated in your recorded program during a recording
session.

Using HP-IB Echo you can preview the SCPI mnemonic commands that will be stored in your
program before you actually record them. While this is not essential, it can be very useful
when you are in doubt as to what a particular key sequence will record, or precisely when a
key sequence corresponding to a mnemonic is completed.

Recording Programs 2-9

Program control — running, pausing and stopping an IBASIC program -— can be managed
from the analyzer front panel using various hardkeys and softkeys. These actions and their
corresponding keys are described in this chapter.

A special case is an autostart program which runs automatically on power-up if it exists on
the analyzer’s built-in floppy disk drive or RAM disk.

IBASIC programs may also be remotely controlled via SCPI commands over the HP-IB.
For information on running, pausing and stopping programs from an external controller see
Chapter 8, “Interfacing with External Devices.”

Starting Programs Automatically

When the analyzer is powered up, it automatically searches first the internal non-volatile
RAM disk and then the built-in floppy disk drive for a program named AUTOST or
AUTOST.BAS. When an AUTGST program is found, it is automatically loaded and executed.

The AUTOST program can be used for anything from configuring the analyzer for specific
measurements, much like an internal instrument state Save/Recall register, to diagramming
measurement setups using graphics commands, as in a guided measurement sequence.

Refer to Chapter 4, “Saving and Recalling Programs,” for information on using the analyzer
to name programs before they are saved.

Running and Continuing a Program

To rur an IBASIC program that is already in the analyzer program buffer, press the

softkey in the (SysTEM OPTIONS)
an external keyboard in either o

menu., The RUN command can also be executed from
ys.

® Press the function key that corresponds to the

softkey (see note below).

m Type RUN on & command line and press (Enter}. A command line is always available when
an IBASIC display is partitioned. {See Chapter 5, “Developing Programs” for information
about display partitions.) You can also activate a command line from an external keyboard
with no IBASIC displays partitioned by pressing the key on your external keyboard.

Running, Pausing and Stopping Programs 3-1

Note When an external keyboard is connected, its function keys through
always represent the analyzer’s eight softkeys. The analyzer’s hardkeys are
each represented by a combination of or and one of the fuanction
keys. Refer to the analyzer’s User’s Guide for more information on the
external keyboard interface. The (SYSTEM OPTIONS) ment can be
accessed from an external keyboard using + (F2) (for (SYSTEM OPTIONS))
and {for). A keyboard template showing which keys to press for
specific analyzer functions was supplied with your analyzer. (HP part number
(8712-80004.)

The RUN command is executed in two phases: prerun initialization and program execution.
The prerun initialization phase consists of:

= Reserving memory space for variables specified in COM {both labeled and blank), DIM, REAL
or INTEGER statements, or implied in the main program segment. Numeric variables are
initialized to 0; string variables are initialized to the null string.

® Checking for syntax errors that require more than one program line to detect. Included in
this are errors such as incorrect array references, and mismatched parameter or COM lines.

After prerun has been successfully completed, the program will begin the execution phase.
Program lines will be executed until one of the following events occurs:

1. An END or STOP statement is encountered in the program.
2. The hardkey is pressed to reset the instrument.

3. The oftkey is pressed to pause the program.
4

. A PAUSE statement is encountered in the program.

Pausing a Program

When an IBASIC program is running on the analyzer a softkey menu is always available.
This “Program Running” menu has seven user-defined softkeys and a softkey. Press
the oftkey to suspend execution of a program.
represented by on an external kevboard.

is the eighth softkey and is

The program can also be paused by inserting a PAUSE statement in the program. The
instrument responds as if you had pressed the 1 oftkey. Refer to Chapter 3,
“Developing Programs,” to learn how to insert ments in your recorded program. Note
that PAUSE is one of the IBASIC keywords included in the editor’s label window (also
described in Chapter 3).

3-2 Running, Pausing and Stopping Programs

To continue the pr

ram from a paused state, press the

(SYSTEM _OPTIONS) ment or on an external keyboard. This menu automatically
appears when a program is paused. Continuing a paused program resumes program operation
from where it was paused, retaining the current program context (variable values, etc).

Pausing a program does not close any files that have been opened by the program. You will
not be abie to perform any of the following disk operations after pausing a program that has
left a file open on that medium:

w RENAME FILE

® DELETE FILE

w DELETE ALL FILES

® COPY FILES

COPY DISK

8 FORMAT DISK

To close all open files, you must complete the execution of the program or perform an
IBASIC RESET. This can be done by pressing the hardkey. The hardkey
is represented by + on an external keyboard. Keystroke recorded programs do not
open files and therefore avoid this problem.

Stopping a Program

To stop a program completely, press the hardkey at any time while the program

is running. This causes an IBASIC RESET. Placing a STOP statement in your program will
also terminate the program, but does not perform an IBASIC RESET operation. The EED
statement can also be used to stop program execution, but it must be the last line in the main
program segment.

The program remains in the program buffer after execution stops until it is cleared. To clear
the program buffer, press (sYSTEM OPTIONS) or turn off
the instrument.

For more information on the PAUSE and STOP statements see the “HP Instrument BASIC

Language Reference” section of the HP Instrument BASIC Users Handbook, contained in this
binder.

Running, Pausing and Stopping Programs 3-3

Saving and Recalling Programs

IBASIC programs can reside in memory, on disk, or in an external computer.

To transfer a program between the instrument’s buffer and a disk

‘menu. To access the (SAVE RECALL
keyboard, use (6a1) + (&) (for) and (&) (for

The GET, SAVE, LOAD, STORE, RE~STORE, and RE-SAVE commands can be used within a
program or from an IBASIC command line to transfer program files to and from mass storage.
An autoload feature also exists to allow for a program (named AUTOST or AUTOST.BAS) to be
automatically recalied from the internal non-volatile RAM disk or the built-in floppy disk and
run at power-up.

ass storage device, use the
menu using an external

Another mode of program transfer is between the analyzer and an external controller, such

as an HP Series 200/300/700 controller. Using an external controller, you can combine the
convenience of keystroke recording in TBASIC with the ease of program editing in a dedicated
external workstation by recording the measurement sequence and then uploading the program
to the external controller for further editing. Fully developed programs may be downloaded
from an external controller as well. The methods of transferring programs between the
analyzer and an external controlier are described in detail in Chapter 8, “Interfacing with
External Devices.”

‘This chapter describes all program transfer operations between the program buffer and the
analyzer internal non-volatile RAM disk, internal volatile RAM disk, internal floppy disk drive
and external mass storage devices (disk drives).

Note The IBASIC file system can work with both LIF (Logical Interchange Format)
and DOS (Disk Operating System) formatted disks. When it catalogs or loads
files from a disk, the analyzer automatically recognizes the correct disk format.

Saving and Recalling Programs 4-1.

Selecting a Disk

When the menu is selected the analyzer automatically catalogs the
selected disk or memory. The selected disk is one of the following mass storage devices:

m Internal Non-Volatile RAM Disk
m Internal Volatile RAM Disk

a Internal Floppy Disk Drive

a FExternal Disk Drive

To select a mass storage device press the softkey in the ment.
Then press the key corresponding to your choice. The HP-IB address of the external disk

drive is set under the [SAVE RECALL men.

Saving a Program

To save the current contents of the analyzer program buffer to a file, press .

in the menu. I desired, specify the type of file, binary or ASCII,
with the oftkey; default is ASCIL. The program is saved to an ASCII file

t name on the currently selected mass storage device or disk. Each time
i key is used a new file is created. These files are named PROGO.BAS,
th the number being changed for each new file. For portability, save files in

with a defau]

BOS volume NYOL . RaM §2/91/21 10:28:32.00 Pageifl Programs

MEM: Y Byies Free: 48391

FILE RAME TYRE SHE LAST CHAMGE Sove
<PARENT> <DiR> Prograem
PROGH.BAS e Farsd 2t-00T-8% 10:37 Re~Save
STATEQ.STA D03 13056 17—JApi—-52 13:52 Frogrem

TRANS.STA Jajae 3328 TE-JAN-S2 081l 3
o . Fila Type
REFLS.STA bos 3328 19-iAN-9Z 08:20 b AdBS
Recail
Progrem
Sove
AUYOST

IBASIC

Prior Menu

opdib

Figure 4-1. The Screen

4.2 Saving and Recalling Programs

If you are re-saving a program -— that is, saving a file to a disk that already contains the

file name — press and use the arrow keys to highlight the name
of the file to be re-saved. Then press and the file is saved. The disk is
automatically catalogued when the menu is selected.

an also be used to save a new program with a non-default file

name. Press Enter the new program’s name using the external keyboard
or the internal label maker. If no file with that name exists on the disk a new file is created.

AUTOST Programs

IBASIC allows you to designate a program to be automatically loaded and run when the
instrument is first powered up. To make an autoloading program save it with the file name
AUTOST on the internal floppy disk drive or internal non-volatile RAM disk. This can be

done from th mentu by pressing or by using the
oftkey and entering the file name AUTOST.

When the analyzer is powered up, it automatically searches first the internal non-volatile
RAM disk and then the built-in floppy disk drive for a program named AUTOST or
AUTOST.BAS. When an AUTOST program is found, it is automatically loaded and executed.

Recalling a Program

To recall a program file from mass storage to the program buffer, use the
menu to catalog the disk. Select the desired mass storage device or disk, use the

arrow keys to highlight the file and press

The recalled program file is entered into the program buffer one line at a time and checked for
syntax errors. Lines with syntax errors are commented out and the IBASIC syntax error is
displayed briefly in an error message and written to the CRT at the same time. To view error
messages logged to the CRT, use the (SYSTEM OPTiONS) "
allocate a screen partition for IBASIC.

Note Any program recalled to the program buffer using the

menu will overwrite the current contents of the program buffer. Be sure to
save your current program before recalling another program from disk.

Saving and Recalling Programs 4-3

5

Developing Programs

For many applications, you can use keystroke recording to create and run programs without
needing to alter the program code that is generated. However, with some knowledge of

the IBASIC language and the program development capabilities of the analyzer, you can
significantly increase the power of your recorded programs or create your own programs from
the ground up.

This chapter describes the operation of the following keys in the (SYSTEM OPTIONS
menu, and any softkeys found in their underlying menus:

laces you in the editor where you can make changes to your program on a line-by-line

menu allows you to select what part, if any, of the CRT display is available
for the use of IBASIC. An IBASIC display partition provides you with a command line you
can use to execute IBASIC commands from an external keyboard. It also provides an area for
viewing graphics and program output.

allows you to Clear Programs from the program buffer, allocate memory for
program use, or secure program lines.

Developing Programs 5-1

External Editors

In addition to using the built-in IBASIC editor, programs can be developed in the following
external environmenis.

a8 HP BASIC editors
m ASCI word processors

The external editing environments provide many advantages, the most notable being speed
and flexibility. Precautions must be taken when using ASCII word processors because they do
not provide the syntax checking available when using the internal editor.

After editing a program in an external environment, the best practice is to GET the
program from an IBASIC command line using the following procedure (instead of using the

keys described in Chapter 4).
1. Partition an IBASIC display (as described later in this chapter).

2. Use an external keyboard to enter the command GET "PRDGO: ,4" {this command loads a
program file PROGO from the internal floppy disk drive).

3. Watch the IBASIC display as the program is loaded — syntax errors result in error
messages displayed on the screen.

4. Edit the program to correct any errors found.

HP BASIC

The HP BASIC editor checks for the syntax of the version of HP BASIC being used. Because
IBASIC is a subset of HP BASIC it may not find all of the errors — the most common error
is the use of HP BASIC commands that are not supported by IBASIC. For a listing of the
commands supported by IBASIC refer to Chapter 18, “IBASIC Keyword Summary”.

ASCII Word Processors

When an ASCII word processor is used to edit a program no syntax checking occurs until the
program is loaded by the instrument. Another complication with using a word processor is
that program line numbers are not automatically renumbered when new lines are inserted.

It is recommended that you renumber the program, as described later in this chapter, to
reduce the possibility of errors. Errors in numbering lines usually do not result in a syntax
error, they write over other program lines.

5.2 Developing Prbgrams

Editing Your Program Using

The built-in editor may be used for creating and altering lines in an IBASIC program. Those .
familiar with the editor found in HP BASIC will find it somewhat similar to the instrument’s
IBASIC editor; others should find it easy to learn and use. This section tells you how to edit
and enter an IBASIC program.

To start the editor, press the meny or on
an external keyboard. You will see the program appear on the display with & cursor on the
first line of the program, as shown in Figure 5-1. If the program buffer is empty, the first line
number 10 appears with the cursor positioned to begin entering text.

CALL [PRINT (ABORT SUB SUBEND DATA LOCAL DIM 2IT ASCDEFGHIJKLM Eoit
5 Q ~ LT
.)) , Insert
20 bTnis program measures the transmission and Line
30 i reflection characteristics of z bhandpass filter
40 frmmmm T = Insert
50 ASSIGN @Hp8711 TO 800 Char
60 ON KEY O LABEZL "TRAN" CALL Transmission
70 ON KEY 1 LABEL "REFL" CALL Reflection Delgte
80 ON KEY 3 LABZL "SETUP" CALL Setup_diag Line
Q0 ON KEY 5 LABEL "EXIT" GOTC End_preg
Racall
100 LOOP Line
110 DISPE "WAITING FOR SELECTION®
120 END LOOP
130 End_prog:DISP : Delete
140 ZND Char
150 |
160 8UB Transmlssion Enter

170 Transmission:!

180 QUTRUT @He8711; "CONF "FILT:TRAN'"

190 QUTRUT @HpB714; "DISP: ANN:FREQL :MODE CSPAN"
200 QUTRUT @HpBT11; "SENST :FREQ:CENT 175 MH7"

Prior Menu

Figure 5-1. The HP IBASIC Program Editor

The analyzer editor is accompanied by a “Label Window” at the top of the screen. This
window is filled with characters and IBASIC keyword commands and has its own cursor.

The current program line (the line containing the cursor) always appears as two lines on the
screen, allowing you to enter up to 108 characters if needed. All other lines have only their
first 51 characters displayed (excluding line numbers).

Each line has a numeric field in the first 6 columns in which program line numbers are right
justified. Although prograiz lines are automatically numbered by the editor, you can edit the
current line number to copy or move it to a different location in the program. The range of
line numbers is from 1 to 32767. To end an editing session press the

Developing Programs 5-3

The IBASIC Editor Softkeys

The editor has two sets of softkey menus, the Edit keys and the Character Entry keys. The
edit menu is activated when you press (SYSTEM OPTIONS) The menu box above
the softkeys shows the label Edit.

The edit menu provides the following softkevs:

T N Sl

—

e, e W e T e ST o S e S e

bR A el B i B 1 O B O S s

FEEEEEERE
Sy

— —

The character entry menu is described in the “Editing from the Froat Panel” section of this
chapter.

Recording into an Existing Program

One way to enter lines into your program is to use the keystroke recording capabilities of
IBASIC. To record measurement sequences or other front panel operations into your program
follow the procedure described below.

1. Activate the editor by pressing (SYSTEM OPTIONS}

2. Use the step keys on the analyzer or the cursor keypad on an external keyboard to position
the cursor on the line above which you want the recorded statements inserted.

to exit the editor.

4. Press to activate keystroke recording.

5. Record the measurement sequence or front panel operation.

6. Press (SYSTEM OPTIONS to conclude the recording session.

The inserted recording acts the same as if you had pressed
generated DUTPUT statements in insert mode.

n the editor, and

Note The ASSIGN @Hp8711 to 800 statement is NOT generated when you are
recording into an existing program and MUST be included in your program
prior to any recorded OUTPUT commands. If you initially created the program
using recording, this statement should already exist. If it does not exist, you
will need to enter it.

5-4 Developing Programs

Editing with an External Keyboard

With an external keyboard connected to the analyzer, it is easy to edit or create an IBASIC
program using the internal editor. Note that the Front Panel Editor described in the next
section is always available, even when an external keyboard is in use.

Note The analyzer and the IBASIC editor work with IBM PC-AT compatible
keyboards (US only) that have a standard DIN interface. Non-US language
keyboards will not cause an error, they simply will not be recognized as
different from the US keyboard. A compatible keyboard can be purchased by
ordering option 1CL with the analyzer. Keyboards with a mini-DIN connector
will need a mini-DIN to DIN adapter, HP part number C1405-60015.

The PC-AT keyboard, Figure 5-2, has four major key areas: the typewriter keypad, the
numeric keypad, the cursor keypad, and the function keys. Alphanumeric text can be entered
using the typewriter and numeric keypads as needed. The cursor keypad can be used to move
the cursor up/down a line or left/right to the next character positions. The function keys of
the keyboard map to the softkeys on the analyzer front panel.

FUNCTION KEYS

&3 LFE FG 7 FS Fg F1O FE i E2]

TYPEWRITER KEYRAD CURSOR KEYPAD NUMERIC KEYPAD

NQQQUDDDGQBDDF@@§M@DW@@DG?
;EJJDDDDDDGGDDDLM@EEHCD@gi
{IEESEESEEESELT| ,FDufj
QIMIDDMQDUL;EELﬁJE D O,
O O] O Oleee 0l

Figure 5-2. The PC Keyboard

Connect the keyboard to the rear panel DIN connector of the analyzer with the power off.
wer and load the IBASIC program to be edited. Select the (sSYSTEM OPTiONS)
mernu and use the cursor keypad to position the cursor within the program for
editing operations. The Page Up and Page Down keys on the keyboard scroll through the
program quickly and easily.

Developing Programs 5-5

Inserting Lines

Insert one or more program lines above an existing line by placing the cursor on that line and
pressing + on the keyboard. This key combination functions as a toggle to turn
insert mode on and off.

As an example, assume you want to insert some lines between two adjacent program lines
numbered 90 and 100. Place line 100 in the current line position and press + (insert):
The program display “opens” and a new line, number 91, appears between line 90 and line
100. Enter the inserted line and another inserted line, number 92, will appear. I, after
continuing to enter lines in this manner, the inserted line number increments to 100, then the
current line 100 wili be renumbered one higher to accommodate the inserted line.

'To stop inserting lines either press + again or use the cursor keys to move to
another program line. Make sure vou have entered any changes to your final inserted line
(with the key) before exiting the insert mode. Remember any changes you have made
to the current line will be lost if you move the cursor to another line without pressing (Enter).

Editing Lines

Use the cursor keypad on the keyboard to move around the program for editing. The left and
right arrow keys move within a program line while the up and down arrow keys move between
lines. The alphanumeric keypad on the keyboard can be used for entering or editing text.
Another key that is useful is the key, which deletes the character highlighted by the

Cursor.

When you finish editing or changing a program line, store it into the program by pressing
on the keyboard. The computer checks the line for syntax errors and converts letter
case to the required form for names and keywords (IBASIC commands). If no errors are
detected, it then stores the line in the program buffer.

Entering Program Lines

When you finish entering or changing a program line, to store it into the program buffer you
must ENTER it in one of four ways:

1. Use the key on the front panel of the analyzer.
. Use the oftkey on the instrument.

3. Use the iEﬁer) of (Return) key on the external keyboard.
4. Use the function key on the keyboard ((s)) that represents the analyzer’s

b2

The computer checks the line for syntax errors and converts letter case to the required form
for names and keywords (IBASIC commands).

If no errors are detected, it then stores the line.

Note If you edit or enter text on the current program line and then move off the
line without pressing ENTER, all editing on the line will be lost.

5-6 Developing Programs

Editing from the Front Panel

Use the step keys to move the cursor up and down the lines in the program. When the cursor
is located at the beginning of a line you want to change, use the knob to position the cursor
within the line.

Character Enfry

The character entry menu and the associated label window are activated by pressing the
. or softkeys. The knob and step keys now move the cursor in the

label window.

Use the knob or step keys to move the label window’s cursor until it highlights the desired
letter or keyword and press . Continue editing until the line is correct.

The computer checks the line for syntax and then stores it in the program if the

syntax is correct. Press to return to the edit menu.

The character entry menu provides the following softkeys:

((FL) Inserts the character or word highlighted by the label window
cursor at the position marked by the program cursor.

() Inserts a space at the posifion marked by the program cursor.
(3)] Deletes the character highlighted by the program cursor.
(F8) Deletes the last character before the program cursor,

((Fs) Enters the edited program line.

(@) Returns to the edit menu and de-activates the label window.

The Label Window

The label window is a scrolling list of the most common characters, symbols and keywords
used in IBASIC programming. It contains the uppercase alphabet, the numbers 0 to 9,
symbols such as single and double quotation marks, parentheses, signs for mathematical and
string operations as well as numerous other characters and symbols.

It also contains the following IBASIC keywords:

ABORT EHNTER mar
ASSIGN FCR OUTPUT
BIT GCTO PAUSE
CALL ¥ PRINT
CLEAR INPUT SUB
DATA IHTEGER SUBEND
DIM LIST THEN
DISP LOCAL TO

E¥D KEXT - WAIT

Developing Programs 5-7

Inserting Lines

To insert one o am lines above any existing line, place the cursor on the existing
line and press This causes the cursor to move to a new line that appears above
the existing one. Enter and store the inserted line and another inserted line will appear.
Remember, each line must be ENTERed or any changes will be lost when the cursor is moved

to a different line.

Removing Program Text

You can remove individual characters or entire lines from within the editor.

Deleting Characters

The
the left one place. Repeatedly pressing

oftkey removes the character under the cursor and moves all characters to

ill cause text to the right of the cursor

to be removed one character at a time. The softkey functions the same iz both
the line number and program statement fields. en used in the line number field, it deletes
only line numbers to the right of the cursor (not program statement characters).

When using an external keyboard there are other keys that perform the same function as the
softkey. These are the key in the cursor keypad and the function key

that maps to the appropriate softkey, for the edit menu or for the character entry
ment.

Another way to remove text on a line is by backspacing. Pressing the hardkey or
the softkey on the front panel of the analyzer removes the letter to the left of

the cursor and moves the cursor (and all characters to the right of the cursor} one space to
the left. The function key or the key on the typewriter keypad of the external
keyboard perform the same function. When the cursor is on a line number, using backspace
simply moves the cursor back one position without deleting the number.

Deleting Lines

The softkey allows you to remove the current program line. When the current
program line disappears, all subsequent lines in the display move up one line, but are not
renumbered. The carsor maintains its column-relative position on the next highest numbered
line.

s pressed when the cursor is on the last program line, the line text is
removed but the line number remains with the cursor resting in the first column of line. This
puts the editor in insert mode on the last line of the program (see “Inserting Lines”). (To get
out of insert mode, simply move the cursor up one line.)

Pressing will NOT remove a subprogram line with the SUB keyword in it
unless all program lines belonging to that subprogram have already been deleted. A block
of program lines can be deleted by executing the command DELETE x,v from an IBASIC
command line (where x is the first line number in the block and y is the last line number).

n external keyboard there are other keys that perform the same function as the

softkey. These are + in the cursor keypad and the function key
((F3)) that maps to the

softkey in the edit menu.

5-8 Developing Pragrams

Recalling a Deieted Line
The last line th

line press the
the line to the program.

deleted using is buffered in the analyzer. To recall this

softkey or on an external keyboard. Pres

0 restore

Renumbering, Copying, Moving, and Indenting Lines

If you want to change the line number of an edited program line, simply move the cursor to
the line number field and enter the line number you want. Changing the line number causes
a copy operation, not a move. Therefore, if you only want to move the line, change the line
number first, press nd then delete the original line. If you want to create an edited

The

copy of the current line, edit the line and then change the line number and press
edits will only appear in the copied line.

If you are inserting a program line and you change the line number, the line will move to its
new location when you ENTER it. The editor will remain in insert mode at the new location
in the program.

You will notice that when the cursor is in the line number field, entries operate in an overtype
fashion rather than in the insert fashion as in the text portion of the program line. Also the
(=) (backspace) key simply moves the cursor over line numbers without deleting the number.

Note To renumber the entire program, IBASIC supports the RENumber command
BUT you need an external keyboard to execute it. The command can be
executed by following the steps listed below.

1. EXIT the edit mode by pressing

ntil the (SYSTEM OPTIONS)

2. Partition an IBASIC display as described next in this chapter.

3. Enter the command REN x,y (where x is the new beginring line number
and y is the increment) from the command line of the IBASIC display.

4. Another way to “renumber” program lines with an external keyboard is
to use the COPYLINES and MOVELINES commands. Use the INDENT
command to make your code more readable.

Developing Programs 5-9

Using

Pressing the (sysTEM oPTIONS) ZBASIC IBASIC Display softkey (on an external
keyvboard) allows you to allocate a partition of the analyzer’s display to be used by your
program or, alternately, to return any allocated partition to the analyzer.

The analyzer display is divided into two small partition areas (Upper and Lower) or ane large
area (Full}, which encompasses both the Upper and Lower partition areas.

All screen output commands, such as PRINT and DRAW, require that you aliocate a partition
of the screen in order to view the resul mmand. This can be performed in your
program or interactively using the softkey. Allocating display partitions
can be accomplished from within your program using the SCPI mnemonic “DISP:PROG" and
specifying the parameter UPPER, LOWER or FULL. For example the statement

QUTPUT 800;"DISP:PROG FULL"

allocates the entire display, corresponding to selecting Tmenu.

An IBASIC display partition cannot occupy the same location as a measurement channel
display. When an IBASIC display is partitioned it limits the amount of the CRT available to
simultaneously show measurement data. Table 5-1 shows the menu softkeys,
their corresponding SCPI mnemonics, their functions and the measurement data that can be
viewed when the display partition is allocated.

Table 5-1. IBASIC Display Partitions

SOFTKEY SCP1 MNEMONIC ALLOCATES VISIBLE DATA
- : DISPlay:PROGram OFF No Display Channels 1 and 2
DISPlay:PROGram FULL The Whole Display None
DISPlay:PROGram UPPer Upper Channel Arvea Channel 2 only
DISPlay:PROGram LOWer Lower Channel Area Channel 1 only

5-16 Developing Programs

Note When the UPPER or LOWER display partition is selected, the measurement
display automatically selects the “split-screen” format. This format uses half
of the CRT to display each channel’s measurement data. Channel I data is
always shown on the upper half of the screen, channel 2 data is shown on the
lower half. The split-screen format allows measurement data to be viewed
simultaneously with IBASIC program output. For more information about the
split-screen format, or other parts of the measurement display, refer to the
analyzer User’s Guide.

Most display aliocation should be handled by your program via the SCPI mnemonics. These

softkeys are best utilized during program development.

An IBASIC partition can be very useful during program development. It can be used to
view program output, to query variables and to execute IBASIC commands {such as GET and
REN} outside of your program. Figure 5-3 shows the relative size and location of the different

IBASIC partitions and their command and display lines.

FULL partifion

[Bisplay Ttne 77

Command line

Display Tine
Commandg line

UPPER partition

Display line
Command ling

LOWER partition

Figure 5-3. The IBASIC display partitions

More information about using display partitions within a program is available in Chapter 7,
“Graphics and Display Techniques.”

Developing Programs 5-11

Pressing the

you to clear the program b

softkey (F6 or an external keyboard) allows
y for program use, or secure your program.

® Clear Program (F1)
» Memory Size (F2)
® Secure (F'3)

Executing th erases the current program buffer and frees all memory
currently allocated. Memory size (see below) is reset to 8192 bytes. You will be prompted to
ensure you do not accidentally erase the program.

allows you to set stack memory to be used by your program. At power up it is
v - to 8192 bytes. However, when a program is (RUN), the analyzer will try to
a,"utomatzcafily set the Memory Size large enough to accommodate the program’s Stack and
COM memory requirements.

For some programs the automatic memory sizing will be foo small and you will get the
message:

Error 2 in 100 Memory overflow

When this error occurs, you must manually set the to the value in bytes
required by your program, up to the available memory in your system.

. is used fo secure lines of your program. Secured lines cannot be listed, edited, or
ed. After you press this key vou will see:

m Start Line # (softkey 1)
w End Line # (softkey 2)
® Perform Secure (softkey 4)

After you have set the start and stop line numbers, execute th

- operation.

Caution Once you have secured your program lines, there is no way to remove the
security. Therefore, do not secure the only copy of your program. Make a
copy of your original program : the copy, and keep the original in a
safe place. This prevents unauthorized users from listing your program.

5-12 Developing Programs

6

Debugging Programs

The process of creating programs usunally involves correcting errors, You can minimize these
errors by using keystroke recording for measurements and other front panel sequences and by
writing structured, well-designed programs.

Of course bugs can and do appear iv even the best designed programs and IBASIC contains
some features that can help you to track them down. Some IBASIC capabilities useful

for program debugging are simple and, used properly, can be very helpful. Some of these
capabilities are:

a RUN or CONTINUE your program
= STEP through your program, executing one line at a time
= Display the last error encountered in your program

= Fxamine program variables

By examining the values assigned to variables at various places in the program, you can get a
much better idea of what is really happening in your program.

By inserting a PAUSE statement in your program you can pause the program at any line
xamine the values of variables at that point in the program. You can then press
in the (SYSTEM OPTIONS] menu to resume operation to the next PAUSE
statement (or the program end).

These capabilities can be used together to effectively examine the program’s operation and
solve vour particular problems.

Note Most of the debugging techniques described in this chapter make use of an
external keyboard. The analyzer and the IBASIC editor work with PC-AT
compatible keyboards (US only) that have a standard DIN interface. Non-US
language keyboards will not cause an error, they simply will not be recognized
as different from the US keyboard. A keyboard can be ordered with the
analyzer by ordering option 1CL.

Debugging Programs 6-1

Setting Breakpoints

A common method of debugging a program involves the use of breakpoints. A breakpoint
causes the program to stop before executing a specified line so that you can examine the
program state at that point. In IBASIC this can be accomplished by inserting PAUSE
statements in the program code. Note that PAUSE is one of the IBASIC keywords included
in the editor’s label window (described in Chapter 5, “Developing Programs”}. When the
program is then run, you can use the command line to check or change variable values.

Execution of the program can be resumed in one of two ways.

m Press on an external keyboard) to execute next program line.

¥ Press ((F2) on an external keyboard) to continue the program until the next
PAUSE, STOP or END statement is encountered.

Examining Variables

To examine a variable it is n ' to pause the program. Pausing the program can be
accomplished by pressing the oftkey ((Fg) on an external keyboard) that is available
when a program is running, or by msertmg a PAUSE statement in your program.

A command line becomes active when an IBASIC program is paused or stopped and an
IBASIC display partition is present. {For information on creating an IBASIC display
partition, see “Using IBASIC Display” in Chapter 5, “Developing Programs.”) You may also
activate the command line when no IBASIC window is partitioned by pressing the key
on the external keyboard. A cursor will appear in the lower left portion of the screen when
the command line is active. Strike the key again to de-activate. Once the command
line is active, a variable can be examined in $wo ways. Both methods require the use of an
external keyboard.

1. Enter the variable name (without a line number) on the command line. This results in the
value assigned to that variable being shown in the display line of the IBASIC window.

2. Execute the command PRINT Value from the command line {where Value is the name of
the variable being examined). This results in the value assigned to that variable being
shown on the print screen of the IBASIC window.

To examine a variable without accessing a command line it is necessary to add the statement
PRINT Value (or DISP Value) to the program before the PAUSE statement that temporarily
stops the program. PAUSE, PRINT and DISP are all keywords that are included in the IBASIC
editor’s label window (see Chapter 5, “Developing Programs” for a description of the label
window).

§-2 Debugging Programs

Note An IBASIC display partition must be active to view the results of a PRINT
statement or to access a command line. The display line (accessed with the
DISP command) is available even when no IBASIC display is present.

Examining Strings

Enter string variables as you would any other variable. Any string variable entered without
delimiters will display as much of the string as will fit on the display line of the screen {(up to
58 characters).

To select only a section of a string, use the IBASIC substring syntax (see the “HP Instrument
BASIC Programming Techniques” section of the HP Instrument BASIC Users Handbook). For
example, to examine the 7 character substring starting at the second character of A$ enter
4%$02:7] on the command line or execute the command PRINT A$[2;7].

Examining Arrays

To select an array to be examined you can either select individual elements or the entire array.
For example the entry:

I_array(1),I_array(2),I_array(3)
selects the elements 1 through 3 of the array I_array to be displayed.

You may select an entire array to be examined by entering the array variable name and
specifying a wildcard (*) for the element (such as I_array{(x)). If L_array(20) is an integer
array, and the first and second elements are set to 100, entering I_array(*) would display:

100 100 0 0 0 ¢ 0O 0 0O 0 O 0O 0 0 0 0 6 0 0 O

Individual array elements (e.g., I_array(17)) can also be specified in the same way as any
other single variable.

Debugging Programs 6-3

Displaying the Last Error Encountered

It is sometimes useful to review the last error encountered by a program that is being run,
This is done from the command line by examining the value assigned to the variable name
ERRM$. This value will include the error number and message of the last error encountered by
the program.

An additional method of displaying the error message is to use an error trapping subroutine.
For example, insert the following line at the beginning of a program.
ON ERROR GOSUB Errormsg

The subroutine Exrrormsg should then be inciuded at the end of the program (after execution
is stopped but before the END command).

100 Errormsg: !
110 DISF ERRM$
120 PAUSE

130 RETURN

The error message is automatically shown on the display line of the IBASIC window and
program execution is paused when an error message is encountered.

You may also encounter SCPI errors, in addition to IBASIC errors. SCPI errors can occur
when using the OUTPUT command to control the analyzer, when a command syntax is
unrecognized or incorrect. For more details on SCPI errors, refer to the Programmer’s Guide.

6-4 Debugging Programs

7

Graphics and Display Techniques

The analyzer has two measurement channels which can be displayed simultaneously. The
instrument’s screen can be split into two trace areas for this purpose (upper for channel 1 and
lower for channel 2). Additionally, the two measurements can be overlaid onto one full size
screen (the default setting). For more information, refer to “Automating Measurements” in
the User’s Guide.

IBASIC programs have the ability to allocate portions of the instrument’s display for program
output, including text and graphics. This section provides a description of the various
programining techniques used to do both. Any of the three measurement display areas,

called display partitions, can be used by an IBASIC program. These partitions are shown in
Figure 7-1.

»ohan 1:Trensdission Log Magr 10,0 dBf Ref 0.00 B PChan 1:Transmissisn i Mag 0.0 dBS | Ref Q.00 &5

Beran 2:Aeflasiion Leg Mag .03 Raof oO0& [[T
o
e
£ N‘\
7
-20 4
AR =
-3 T et
/ : Torter 175,900 Pz Bpan 300,000 MAT
~40 1 Pohen 2:Refioction topMee SO U8/ Ref 0.00 ¢
-0
/ I i
80 Y
/ i e ‘;
70
1 ™ T
-0] !
AT
Contar A75.000 Mz Bpan 300,000 Mz Gebzer 175,060 MRz Soan J00.000 M2

Figure 7-1. Display partitions on the analyzer

Using the Display Partitions

Many IBASIC commands (such as PRINT, DISP, CLEAR SCREEN, MOVE, DRAW and GCLEAR)
require a display as an output device. These commands output data to the screen by
writing to a screen buffer. Since IBASIC programs share all the hardware resources with the
instrument, the display must be shared for instrument and program use.

Graphics and Display Techniques 7-1

In order to view this output buffer, a portion of the display must be released from

the instrument. W]
(SYSTEM OPTIONS) |

again to return it for the instrument’s use.

i g, you can do this manually, using the
- softkey menu. To do this within a running
program requires qenémc‘ a command to the analyzer both to borrow a part of the display and

‘This process is called the allocation of display partitions. Manual allocation of display
partitions is described in Chapter 5, “Developing Programs.” Table 7-1 below includes 2

summary of the available partitions, their locations and the SCPI mnemonic used to select

each partition.

Table 7-1. IBASIC Display Partitions

SOFTKEY SCPI MNEMONIC ALLOCATES
(D)) DISPlay:PROGram OFF No Display
DISPlay:PROGram FULL The Whole Display

(&2)

DISPlay:PROGram UPPer

Upper Channel Area

DISPlay:PROGram LOWer

Lower Channel Area

Allocating Display Partitions

To request a display partition from the analyzer for use by an IBASIC program, send the
instrement the corresponding SCPI mnemonic. "DISP:PROG UPPer" allocates the upper
partition, "DISP:PROG LOWer" allocates the lower partition, and "DISP:PROG FULL" allocates
the full screen partition.

For example, to print a message to the upper partition area, you might use a program segment
like this:

30 ASSIGN @Hp8711 TD 800

40 QUTPUT @Hp8711;"DISP:PROG UPPer"
50 CLEAR SCREEN

60 PRINT "This is the upper partition"

To be sure that you are not writing to a partition that has not yet been assigned, you should
include a WAIT statement or, even better, add a SCPI query command followed by an ENTER
statement to synchronize the program with the instrument. The previous example might then
look like this:

30 ASSIGN @Hp8711 TG 800

40 OUTPUT @Hp8711;"DISP:PROG UPPer"
42 QUTPUT @Hp8711;"DISP:PROG?"

44 ENTER @Hp8711;Screen$

46 1IF Screen$<>"UPP" THEN GOTO 42

50 CLEAR SCREEN

60 PRINT "This is the upper partition”

The mnemonic DISP:PROG? (line 42 above) requests the instrument to send the current
partition status. The ENTER statement on the next line reads that status and then continues.

7-2 Graghics and Display Techniques

De-Allocating Display Partitions

To return the display partition to the analyzer for use as a measurement screen, use the
"DISP:PROG OFF'" mnemonic. This should be done before the termination of any program that
has allocated a display partition. It may also be required within the program to allow the user
to view instrument measurement data. The following example demonstrates this command:

830 0UTPUT @Hp8T11;"DISP:PROG OFF"

Operation with No Display Partition

IBASIC programs can also access the analyzer’s display when no partition has been allocated.
This can be done through the use of certain areas of the screen. One of these areas is to the
right of the measurement dispiay. This area is reserved for softkey labels. It can be accessed
using the ON KEY statement.

A second area is a display line (or command line) that appears when no part of the display

is allocated for use by IBASIC. This display line, which is located at the lower left corner of
the active channel graticule, appears when needed by the INPUT or DISP commands or when
activated. To activate the command line, press on an external keyboard. Figure 7-2
shows an example of the use of this display line. When the INPUT command is being used, the
IBASIC editor’s label window and character entry softkey menu appear. Refer to Chapter 5,
“Developing Programs,” for a description of the IBASIC editor.

[ABCDET GHI JKLMNOPORS TUVWXYZ01 2 RA56TED J%mem (18" © © 5.]
o PChan 2:Rgflection Loag Mag 0.0 dB/ Ref C.00 dB
chiMkre 175,760 MHz
o8 | -0.59 g8
Cha ¥ -
Chz Mkrl 175760 MHz
1200.00 @B

1
E
=20 i \
-30 / |

- A
< mre

I RV A e v

R AR o
O 1
~70
80 Enter | Stard Freglency [(MHz):
Abs

Start 0.300 MHz Stop 1 300.000 MHz

Figure 7-2. Using INPUT with no display partition

Graphics and Display Techniques 7-3

In addition to the commands described above, the analyzer has “User Graphics” commands
that can write to any of the display partitions. These commands can be used to write to
measurement windows as well as the IBASIC window. These commands are described in the
“SCPI Graphics Commands” section of this chapter,

Displaying Text

Most of IBASIC’s text capabilities are covered in detail in the “HP Instrument BASIC
Programming Techniques” section of the HP Instrument BASIC Users Handbook. The PRINT
statement works the same way in every display partition. Information is printed starting at
the top left corner of the current partition and continues until the display line of the partition
is reached. The screen then scrolls up to allow additional lines to be printed. Figure 7-3 shows
the different display partitions and the location of text printed to them. Note that causing the
screen to scroll does not affect any graphics displayed on the screen, since text and graphics
are written to different planes of the display.

All partitions have a width of 58 characters. The height varies according to partition. Both
upper and lower partitions contain 10 lines, while the full partition contains 22 lines.

This information is useful if you are using the PRINT TABXY statement to position text. For
example, the following program segment prints a message in the center of the full partition
(assuming it has been allocated earlier in the program).

100 Haxlines=22
110 Tabx=(B58-LEN{"This is CENTERED text."))/2
120 PRINT TABXY(Tabx,Maxlinesa/2);"This is CENTERED text."

(1.1} (58 1}

This is CENTERED text.

(1.22 (58.22)

Figure 7-3. Printing to a display partition

7-4 Graphics and Display Techniques

A useful technique to get text onto the screen quickly is to write your display message to

a long string using the OUTPUT statement, and then print the string to the screen. For large
amounts of text, this speeds up screen display time considerably. The following program
segment demonstrates this:

80 DIN Temp$[100],Big$12000]

70 OUTPUT Temp$;"This is the first line of text"
80 Big$=Big$&Temp$

90 OUTPUT Temp$;"This is the second line of text"
100 Big$=Big$&Temp$

110 PRINTER IS CRT; WIDTH 2000

120 PRINT Big$

The OUTPUT statements in this example are used to copy each line of the message into the
variable Temp$ and append a carriage return.

You can also print to the screen using the OUTPUT statement in conjunction with the display
address (1). For example, line 150 below writes a string to the screen.

150 QUTPUT CRT;"0UTPUT 1 WORKS WELL TCGD™

Pop-up Message Windows and Custom Annotations

From your IBASIC program, you can replace instrument annotations with user-defined
annotations. You can change the X-axis labels and channel annotations to customize the
display. Pop-up messages may also be used to display permanent or temporary messages.
Refer to “Automating Measurements” in the User’s Guide.

Graphics Initialization and Scaling

In all partitions, display coordinate 0,8 is at the bottom left corner and clipping occurs
automatically if the XY coordinate exceeds the displayable range of the current partition.
Figure 7-4 shows the different partitions and the pixel dimensions (GESCAPE values) for
each.

After a GINIT commard, the display is dimensioned as 100 GDU’s (Graphical Display Units)
high and 245 GDU’s wide (assuming full partition). This gives a RATIO result of 2.45 and
provides the same results as issning a WINDOW 0,245,0,100 command. In order to prevent
circles from appearing oval shape, this ratio should be maintained. You can also issue a
WINDOW 0,861,0,351 command. This will maintain the same ratio but the display will now
be dimensioned in actual pixel unit. This may be more useful than the default GINIT values
since fractional display units are not needed, allowing integers only to be used; thus speeding
execution. These are also the same values that are returned by utilizing the GESCAPE
commaxnd (see BARCODE program example}. The GESCAPE command will always set

the current pixel dimension sizes. Because the results of this command can vary drastically
with partition size, you must first partition the display BEFORE executing the GINIT and
GESCAPE commands.

Note Upon power up, the default display coordinates are 0,861,0,351 and will
remain that until a GINIT is performed. It is recommended that a GINIT
command always be part of any graphics program and that it be executed
only after the display partition is set.

Graphics and Display Techniques 7-5

{0,351) (881,351) {0,456} {861,158}

GPPER glspiay parittion

(a.0) 81,0}

FEL dlsplay partitien

{6.157) {881,157}

LOWER display partiion

(0.6} {B61.4) G5} {B61,4)

pdB3e

Figure 7-4. Pixel Dimensions with Available Display Partitions

Using Graphics

IBASIC’s graphics commands are easy to understand and use. You can use the MOVE
statement to move the “pen” to a specific pixel location {without drawing) and then draw a
line from the current pen location to another pixel coordinate using the DRAW staterment. The
GCLEAR statement removes all graphics.

The PEN command provides an easy method of erasing lines drawn by the DRAW command.
When PEN 1 is issued (the default state), all DRAW commands act normally, drawing a line
with the full intensity. When PEN 0 is issued, all DRAW commands erase any pixels their path
encounters. Where there are no lines in the path, no change is visible. As an example of using
the MOVE and DRAW commands, the following statement moves the logical pen to a point 100
units to the right of, and 150 units above, the lower left corner of the display:

100 MOVE 100,150

This statement then draws a line to coordinates (200,10):
110 DRAW 200,10

Finally, these two statements erase the previously drawn line:

120 PEN O
130 DRAW 100,180

Although text and graphics appear together, you can clear them separately. Use CLEAR
SCREEN to clear the text. Use GCLEAR to clear the graphics.

7-6 Graphics and Display Techniques

Drawing Figures

Some IBASIC keywords listed below may be used to simplify drawings and setup diagrams.
See also, the paragraph below titled “Graphics Exceptions”.

POLYGON - Draws all or part of a regular polygon
RECTANGLE - Draws a rectangle

LABEL - Produces alphanumeric labels

CSIZE - Sets size and aspect ratio of labels

LDIR - Defines the angle at which a label is te be drawn
LORG - Defines the relative origin of a label

These keywords are used in the “BARCODE” program example listed in Chapter 11,
“Example Programs”, and on the IBASIC Example Programs Disk. The keywords appear in
the subprograms ‘Box’, ‘Circle’, and ‘Label’ described below.

1620 ! Draw a box in the active IBASIC partition

1621 ! Xpos,Ypos specify the CENTER of the box

1622 ! Xsize,Ysize are width and height dimensions

1623 ! B¢ is a scaling factor for the figure being drawn

1624 ! 1.79 is a correction factor used by the 8711 only

1630 Box:SUB Box(Xpos,Ypos,Xsize,Ysize)

1640 COM /Scale/ Sc,INTEGER X,Y

1650 MOVE X+(Xpos-Xsize/2)*Sc,Y+(Ypos-Ysize/2)*Sc

1660 RECTANGLE Xsize*Sc,Ysize*Sc*1.79 18711 Pixel H:W Ratio
1670 SUBEND

1681 ! Draw a circle in the active IBASIC partition
1682 ! Xpos,Ypos specify the center of the circle

1683 ! Radius is the size of the circle

1684 ! Sc is a scaling factor for the figure being drawn
1690 Circle:SUB Circle(Xpos,Ypos,Radius)

1700 COM /Scale/ Sc,INTEGER X,Y

1710 MOVE X+XposxSc,Y+Ypos*Sc

1720 POLYGOH Radiusx*Sc,16,16

173C SUBEND

1890 ! Creates a label in the active IBASIC partition
1891 1 Text$ is the alphanumeric label
1892 ! Xpos,¥pos is the position of the label

!
!
!
1893 1 Lorg references the label orientation to Xpos,Ypos
1
1
:

1894 ! Ldr is the angle in which the label will be drawn
1895 ! Pen is pen number (0 erases)
1896 ! Sc is a scaling factor for the figure being drawn

1900 Label :SUB Label(Text$,Xpos,Ypos,Size,Lorg,Ldr,Pen)
1910 COM /Scale/ Sc,INTEGER X,Y

1920 LORG Lorg

1930 LDIR Ldr

1940 CSIZE SizexSc,1

1950 MOVE X+Xpos*5c,Y+Ypos*Sc

1960 PE¥X Pen

Graphics and Display Techniques 7-7

1970
1980

LABEL Text$
PEN 1

1990 SUBEHD

2000

The following program displays a “HELP” screen and demonstrates many of the techniques
discussed so far. Running this program produces the screen display shown in Figure 7-5.

10
20
30
40
50
60
70
80
20
100
110
120
130
140
150
160
170

DIM A$[58],String$[1000]

ASSIGN e@Hp8711 TO 800

QUTPUT @Hp8711;"DISP:PROG FULL ; *WAI"

GINIT

GCLEAR

MOVE 0,89

RECTANGLE 200,14

PRINT TABXY(24,2);"HELP"

OUTPUT A$;"This program demonstrates how to print several"
String$=String$zi$

OUTPUT A$;%lines of text at one time. This method offers"
String$=String$&i$

QUTPUT A4$;'"the fastest possible print speed.”
String$=String$&i$

PRINTER IS CRT;WIDTH 1000 ! Prevent auto cr/1f

PRINT TABXY{1,5);String$

END

HELP

This progrom dermonstroies huw to print severat
fhes of text of one tima His method affers
the festest pmseible print spee

pefde

Figure 7-5. “HELP” program output

7-8 Graphics and Display Techniques

Graphics Exceptions

The following graphics commands do not conform to the keyword description found in the
HP Instrument BASIC Users Handbook:

VIEWPORT - Does not create isotropic units that are physically square. Does not soft clip
the display area.

CLIP - The analyzer does not support graphics clipping,.
SHOW - Does not create isotropic units.

POLYLINE, POLYGON, RECTANGLE, RPLOT - The analyzer does not sapport the
FILL or EDGE options. Also see next paragraph.

GRID, RECTANGLE, POLYGON, and POLYLINE scaling differences

When the display is initialized using GINIT, the display will be scaled to a height of
100 GDU’s and a width of 245 GDU’s.

The ratio is 2.453 and the pixel height-to-width ratio is fixed at 1.79 (non square pixels). This
can cause scaling difficulties if not well understood, and will produce different results than is
seen on HP BASIC computers or workstations, The following examples should help clarify
some scaling issues.

After GINIT, performing a GRID 10,10 command will produce a grid array 10 high and

24.5 wide. The individual grids will be rectangular (taller than wide). To produce square
grids, perform a GRID 10%1.79,10 command. This will produce square grids; 10 high and just
under 14 wide. If you move the starting point to approximate center (MOVE 120,50} and
request a square 55 wide by 55 high (RECTANGLE 55,55), the analyzer will automatically
scale this so as to appear square. The width will be 55 GDU’s but the height will be 55/1.79
or 30.7 units high. This will appear square and is quite a different result than would be
obtained by attempting to plot a “square” 55 units on each side; this would instead, produce a
rectangle.

A similar scaling is done with the POLYGON command. If a POLYGON 80 command is
given, the apalyzer will produce a circle with a horizontal radius of 80, but with a vertical
radius of 44.7 GDU"s; even so, it will appear circular.

The following is a simple rule to remember with GINIT values {or the equivalent WINDOW
ratio) on the analyzer: The analyzer will produce circles with the POLYGON/POLYLINE
command and squares with the RECTANGLE command (assuming equal x,y} in all cases.
However, the radius or width {in GDU’s) will be accurate only in the horizontal axis and will
be 1.79 times LESS in the vertical axis,

Try this simple program to demonstrate the above examples. Un-comment line 66 and
comment out line 50 to show the difference in the two GRID statements. The rectangle may
be hard to see since it will partially lie on a gridline; its lower left corner is at the centered
dot.

10 ASSIGE @Hp8711 TO 800
20 OUTPUT @Hp8711;"DISP:PROG FULL"

30 GINIT
40 GCLEAR
50 GRID 10,10 ! makes rectangular grids

60 ! GRID 10%1.79,10 ! makes square grids

Graphics and Display Techniques 7-9

70 MOVE 120,50 ! move to center
8C POLYGON 1 ! make small dot
9C RECTANGLE 35,55 ! makes square
100 POLYGON 80

110 END

Labeling with Different Partitions

The LABEL command may be used to label graphs, however, the foliowing should be noted.
Labels that may be of the correct size for a full screen partition will appear half as big if a
GINIT is performed after the analyzer has been set to either the upper or lower half partition.
This is because the CSIZE command scales according to display height, not width. Since

the display height is one-half, the character size will also be one-half. Labels that are scaled
properly for full screen displays will not be scaled properly for half screen displays and

vice-versa.

7-10 Graphics and Display Technigques

SCPI1 Graphics Commands

In addition to the commands described earlier in this chapter, there are several SCPI
muemonics that can be used to create graphics and messages on the display of the analyzer.

These commands are instrument specific mnemonics, not standard IBASIC commands. They
are also different from the previously described IBASIC commands in that they do not require
an IBASIC display partition. This means that they can be used to write or draw directly to a
measurement window. ’

These commands, listed in Table 7-2 are SCPI mnemonics and are programmable from an
external controller as well as from IBASIC. The commands are of the form

DISPlay:WINDow[1}2]10] :GRAPhics:<command>.

The number specified in the WIXDow part of the command selects where the graphics are to be
written.

WINDowl draws the graphics to the channel 1 measurement window.
WINDow2 draws the graphics to the channel 2 measurement window.
WINDow10 draws the graphics to an IBASIC display partition.

Tip When SCPI graphics commands are used to write directly to a measurement
window they write to the static graphics plane {the same plane where the
graticule is drawn}. There is no sweep-to-sweep speed penalty once the
graphics have been drawn.

Graphics and Dispiay Techniques 7-11

Table 7-2

. 8CPI Graphics Commands

SCPI COMMAND

FORM

DESCRIPTION

DISPlay:WINDowil|2]|10] :GRAPhics
:CIRCie <radius>

command only

Draw a circle of the specified Y-axis radius
centered at the current pen location -
radius is in pixels,

DISPlay:WINDow(1|2]/10] :GRAPhics command only | Clear the user graphics and graphics buffer
:CLEar : for the specified window.
DISPlay:WINDowi1|2]10] :GRAPhics NR1 Set the color of the user graphics pen
1COLor <num> choose from 0 for erase, 1 for bright, and 2
for dim.
DISPlay:WINDowl112]10]:GRAPhics command only | Draw a line from the current pen position
[:DRAWI <x>,<y> to the specified new pen position — x and y
are the new absolute X and Y coordinates
in pixels.
DISPlay:WIHDow[1{2]10] :GRAPhics coramand only | Draw a label with the lower left corner at
:LiBel <string> the current pen location.
DISPlay:WINDow[1{2]10] :GRAPhics CHAR Select the user graphics label font — choose
:LABel :FONT <fonit> from SMALLHSMall | NORMall
HNORmal | BOLD | BBOLA | SLANt | HSLant,
DISPlay:WINDow[1]|2]10] :GRAPhics NRi,NR1 Move the pen to the specified new pen

(HOVE <x>,<y>

position — x and y are the new absolute X
and Y coordinates in pixels.

DISPlay:WINDow[1]2]10] :GRAPhics
:RECTangle <xsize>,<ysize>

command only

Draw a rectangle of the specified size with
lower left corner at the current pen position
— xsize and ysize are the width and
height in pixels.

For more information about the analyzer’s user graphics commands, refer to Chapter 7 of the
Programmer’s Guide. Refer also to the example program titled “GRAPHICS” in Chapter 11

of the Programmer’s Guide.

7-12 Graphics and Display Techniques

Interfacing with External Devices

'This section describes the techniques necessary for programming the HP-IB interface. It
describes how this interface works and how to use it to control or interface with systems
containing various HP-IB devices. It also describes how to interface with external devices
using the serial and parallel interfaces.

The HP-IB interface is Hewlett-Packard’s implementation of the IEEE-488.1 Digital Interface
for Programmable Instrumentation. The acronym HP-1B stands for “Hewlett-Packard
Interface Bus,” and is often referred to as the “bus.” The interface is easy to use and allows
great flexibility in communicating data and control information between an P Instrument
BASIC program and external devices.

IBASIC is an HP-IB instrument controller residing inside an instrument. It uses the
instrument’s HP-IB interface for external communication and an internal HP-IB interface

to communicate with the instrument. This unique arrangement presents a few differences
between IBASIC’s implementation of HP-IB control and HP BASIC controllers. A description
of the interaction of IBASIC with the host instrument and the external HP-IB interface is
given in the section entitled “The IBASIC HP-IB Model”, later in this chapter.

Communication with Devices

HP-IB Device Selectors

Since the HP-IB allows several devices to be interconnected, each device must be uniguely
identified. Specifying the select code of the HP-IB interface (such as 7 or 8} to which a device
is connected is not enough to uniquely identify each specific device on the bus.

Fach device on the bus has a primary address that identifies it. This address can be set by
the user. It must be unique to allow individual access of each device. When a particular
HP-IB device is to be accessed, it must be identified with both its interface select code and its
bus address.

The interface select code is the first part of an HP-IB device selector. IBASIC programs run
inside an instrument and communicate with it over an internal bus (interface select code 8).
IBASIC programs can also communicate with external devices using the instrument’s HP-IB
interface (select code 7).

The second part of an HP-IB device selector is the device’s primary address, an integer in
the range of 0 through 30. For example, to specify the device on the interface at select code
7 with a primary address of 22, use device selector 722. Secondary HP-IB addressing is

interfacing with External Devices 8-1

also supported for those devices requiring it. These devices will have at least 5-digit service
selection such as 72201.

Since the analyzer is the only device on the internal interface, its primary address on that
interface is arbitrary and the instrument will respond to any primary address with a select
code equal to 8 (e.g., 800, 811, 822, etc.).

Note Fach device’s address must be unigue. The analyzer is shipped from the
factory with a primary address of 16. No other device on the bus should use
the same address.

The procedure for setting the address of an HP-1B device is given in the
installation manual for each device. Ti the address of the analyzer, use
the softkeys in the (SYSTEM OPTIONS menu, or the SCPI mnemonic
SYST:COMM:GPIB:ADDR.

Moving Data Through the HP-IB

Data is output and entered into the program through the HP-IB with the OUTPUT and ENTER
statements, respectively. The only difference between the OUTPUT and ENTER staterents for
the HP-IB and those for other interfaces is the addressing information within HP-IB device
selectors.

The following examples show several different syntax styles which you can use.

100 Hpib=7

110 Device_addr=22

120 Device_selector=Hpib * 100 + Device_addr
130 !

140 COUTPUT Device_selector;"FIR7T2T3"

1580 ENTER Device_selector;Reading

320 ASSIGN @Hpib_device TO 702

330 OUTPUT @Hpib_device;"Data message”
340 ENTER @Hpib.device;Number

440 (QUTPUT 800;"S0UR1:POW -10 dBm"

480 ENTER 724;Readings ()

8-2 Interfacing with Externai Devices

General Structure of the HP-IB

Communications through the HP-IB are made according to a precisely defined standard (the
IEEE 488.1 standard). The rules set by IEEE 488.1 ensure that orderly communication takes
place on the bus. For more information about the structure of the HP-IB and the IEEE 488.1
standard, refer to the Tutorial Description of the Hewlett-Packard Interface Bus.

Devices that communicate over the HP-IB perform one or more of the following three
functions.

m Talk — send data over the bus
B listen — receive data over the bus
® Control — control the exchange of data on the bus

The System Controller

The controller is a device that has been designated to control the communication occurring on
the bus. It specifies which device talks, which device listens and when the exchange of data
takes place.

An HP-IB system can have more than one device with the ability to control the bus, but only
one of these devices is allowed to control the exchange of data at any given time. The device
that is currently controlling the exchange of data is called the Active Controller.

One device must be able to take control of the bus even if it is not the active conéroller.
The device designated as the System Controller is the only device with this ability. To
designate the analyzer as the system controller use the

(SYSTEM OPTIONS)

The system controller is generally designated before running a program and should not be
changed under program control. An exception to this is when an IBASIC program is running
on the analyzer’s internal controller. If the IBASIC program controls other HP-IB devices, the
analyzer must be designated as the system controller.

A SCPI mnemonic SYST:COMM:GPIB: CONT <0K|OFF> can be used to make the analyzer the
system controller. Program execution should be carefully synchronized, using the Operation
Complete command (*0PC?) and waiting for a reply before any OUTPUT 7xx command is sent.
(Refer to the “Synchronizing the Analyzer and a Controller” chapter in the Programmer’s
G'uide for more information on the *0PC? command.)

Using the Serial and Parallel Ports

The analyzer has two additional ports that can be used to control peripherals, material
handlers or other devices. Active control of the HP-IB interface is not needed when these
ports are being used. These ports are a paraliel port and a serial port for use with hardcopy
output to non-HP-IB printers and plotters.

In addition to the serial and parallel ports, there are also two BNC connectors on the rear
panel of the analyzer. These connectors provide access {(using TTL signal levels) to two
programmable bits.

m Limit Test TTL bit — indicates the results of a pass/fail limit test
w User TTL bit — to be used as needed (for example to use with a foot pedal)

Interfacing with External Devices 8-3

Using the Analyzer Ports in IBASIC programs

IBASIC can directly control the serial port, the parallel port, the Pass/Fail T'TL bit, and the
User bit without using HP-IB commands with READIO and WRITEIC. READIO and WRITEID are
faster than HP-IB commands.

Writeable Ports

WRITEID

WRITEIC

WRITEID

WRITEIOD

WRITEIO

15,04

15,14

15,24

16,34

9,04

Outputs 8-bit data to the Cent_DG through D7 lines of the Centronics port.
Cent..D0 is the least significant bit, Cent_I}7 is the most significant bit.
Sets Printer.-select signal high (de-select). Checks Centrounics status lines for
s Out of Paper

e Printer Not on Line

s BUSY

e ACKNOWLEDGE

Sets/clears the “user” bit according to the least significant bit of A, A least
signticant bit equal fo 1 sets the user bit high. A least significant bit of 0
clears the user bit,

Sets/clears the Jimit pass/fail bit according to the least significant bit of A.
A least significant bit equal to 1 sets the pass/fail bit high. A least
gignificant bit of 0 clears the pass/fail bit.

Outputs 8-bit data to the Cent._DO0 through D7 lines of the Centronics port.
Cent._D0 is the least significant bit, Cent_137 is the most significant bif. Sets
Printer_select signal high (de-select). Does not check Centronics status lines.

Qutputs a byte to the serial port. The byte is output serially according to
the configuration for the serial port. (See above.)

Readabie Ports [I=READIO(A,B)]

READIO
READIO
READIO
READIO
READTO

9,0
15,0
15,1
15,2
15,10

Reads the serial port.

Reads the 8-bit data port, Cent_DO0 through D7.
Reads the user bit.

Reads the limit test pass/fail bit.

Reads the 8-bit status port
o DO -~ Cent..acknowledge
¢ D1 - Cent_busy

s D2 — Cent_out_of_paper
o D3 - Cent_on_line

s D4 - Cent_printer_err

An example program, REPURT, demonstrating peripheral control over the parallel port is
provided in Chapter 11, “Example Programs.”

Refer to “Automating Measurements” in the Users Guide for further explanation and
examples of how to access the analyzer’s I/O ports.

8-4 Interfacing with External Devices

General Bus Management

The HP-IB standard provides several mechanisms that allow managing the bus and the
devices on the bus. Here is a summary of the IBASIC statements that use these control
mechanisms.

ABORT — abruptly terminates all bus activity and resets all devices to their power-on HP-IB
states.

CLEAR — sets selected (or all} devices to a pre-defined, device-dependent HP-IB state.

LOCAL — returns selected (or all) devices to local (front panel) control.

LOCAL LOCKDUT -— disables selected (or all) devices’ front panel controls.

REMOTE — puts selected (or ali) devices into their device-dependent, remote modes.

SPOLL — performs a serial poll of the specified device {which must be capable of responding).
TRIGGER — sends the trigger message to a device (or selected group of devices}.

These statements (and functions) are described in the following discussion. However, the
actions that a device takes upon receiving each of the above commands are, in general,
different for each device. For external devices, refer to the particular device’s manuals to
determine how it will respond.

All of the bus management commands, with the exception of ABORT, require that the program
be the active controller on the interface. A running IBASIC program is always active
controller on the internal interface (select code 8). For the program to be active controller on
the external interface {select code 7), the instrament must either be set as system controller or
have control passed to it from an external controller. The program automatically assumes the
controller status of the host instrument. For more information refer to “The IBASIC HP-IB
Model” section later in this chapter.

Note In this section the term Host Instrument refers to the instrument where the
IBASIC controller is located.

Interfacing with External Devices 8-5

REMOTE

Most HP-IB devices can be controlled either from the front panel or from the bus. I the
device’s front panel controls are currently functional, it is in the Local state. If it is being
controlled through the HP-IB, it is in the Remote state. Unless operating in the Local
Lockout mode, each HP-1B device has method (usually a key) to return itself to Local (front
panel) control. :

When the analyzer is being controlied by a program running on an external controller, the
softkey is always available to return the analyzer to Local control.

The Remote message is automatically sent to all devices whenever the system controller

is powered on, reset, or sends the Abort message. A device also enters the Remote state
automatically whenever it is addressed. The REMOTE statement also coutputs the Remote
message, which causes all (or specified} devices on the bus to change from local control to
remote control. The host instrument must be designated as the system controller before an
IBASIC program can execute the REMOTE statement on select code 7.

Host Instrument

The REMOTE statement has no effect on the host instrument since it is always in remote control
whenever an IBASIC program is running. Specifying the internal interface in a REMOTE
statement will not generate an errcr, but will have no effect.

LOCAL LOCKOUT

The Local Lockout message effectively locks out the “local” switch present on most HP-IB
device front panels. It maintains system integrity by preventing a user from interfering with
system operations by pressing buttons. As long as Local Lockout is in effect, no bus device
can be returned to local control from its front panel.

The Local Lockout message is sent by executing the LOCAL LOCKOUT statement. This message
can be sent to all devices on the external interface by specifying the bus address (7).
Specifying a single address on the bus (i.e. 722) sends the command to only the device at that
address. The Local Lockout message is cleared when the Local message is sent by executing
the LOCAL statement. However, executing the ABORT statement does not cancel the Local
Lockout message.

Host Instrument

The Local Lockout message is not supported for the host instrument since front panel control
is always necessary in order to pause or abort the program. Specifying the internal interface in
a LOCAL LOCKOUT statement will not generate an error, but will have no effect.

8-6 Interfacing with External Devices

LOCAL

During system operation, it may be necessary for an operator to interact with one or more
external devices. For instance, an operator might need to work from the front panel to make
special tests or to troubleshoot. It is also good systems practice to return all devices to local
control when remote-control operations are complete. Executing the LOCAL statement returns
the specified devices to local (front panel) control.

If primary addressing is specified, the Go-to-Local message is sent only to the specified
device(s). However, if only the interface select code is specified (LOCAL 7), the Local message
is sent to all devices on the external interface and any previous Local Lockout message (which
is still in effect) is automatically cleared.

Host Instrament

The LOCAL statement has no effect on the host instrument since it is always in remote control
whenever an IBASIC program is running. Specifying the internal interface in a LOCAL
statement will not generate an error.

TRIGGER

The TRIGGER statement sends a Trigger message to a selected device or group of devices. The
purpose of the Trigger message is to initiate some device-dependent action; for example, it can
be used to trigger a digital voltmeter to perform its measurement cycle. Because the response
of a device to a Trigger message is strictly device-dependent, neither the Trigger message nor
the interface indicates what action is initiated by the device.

Specifying only the interface select code cutputs a Trigger message to all devices currently
addressed to listen on the bus. Including a device address in the statement triggers only the
device addressed by the statement.

Hast Instrument

The TRIGGER statement is supported by the analyzer. Issuing a TRIGGER command will
initiate a single sweep assuming the analyzer is in TRIGGER hold mode. TRIGGER is ignored if
not in hold mode.

CLEAR

The CLEAR statement provides a means of “initializing” a device to its predefined
device-dependent state. When the CLEAR statement is executed, the Clear message is sent
either to all devices or to the specified device, depending on the information contained within
the device selector. If only the interface select code is specified, all devices on the specified
HP-IB interface are cleared. If primary-address information is specified, the Clear message is
sent only to the specified device. Only the active controller can send the Clear message.

Host instrument

The CLEAR statement is fully compatible on the internal interface.

interfacing with External Devices 8-7

ABORT

This statement may be used to terminate all activity on the external bus and return the
HP-IB interfaces of all devices to reset (or power-on) condition. Whether this affects other
modes of the device depends on the device itself. The IBASIC program must be either the
active or the system controller to perform this function. If it is the system controller and has
passed active control to another device, executing this statement causes active control to be
returned. Only the interface select code may be specified; primary-addressing information
(such as 724) must not be included.

Aborting the internal Bus

ABORT is not supported for select code 8. Executing ABORT 8 will not generate an error.

HP-IB Service Requests

Most HP-1B devices, such as voltmeters, frequency counters, and network analyzers, are
capable of generating a “service request” when they require the active controller to take
action. Service requests are generally made after the device has completed a task (such as
making a measurement) or when an error condition exists (such as a printer being out of
paper). The operating and/or programming manuals for each device describe the device’s
capability to request service and conditions under which the device will request service. To
request service, the device sends a Service Request message {SRQ) to the active controller.
The mechanism by which the active controlier detects these requests is the SRQ) interrupt.
Interrupts allow an efficient use of system resources, because the system may be executing a
program until interrupted by an event’s occurrence. If enabled, the external event initiates a
program branch to a routine which “services” the event (executes remedial action).

Setting Up and Enabling SRQ Interrupts

In order for an HP-IB device to be able to initiate a service routine in the active controller,
two prerequisites must be met: the SRQ interrupt event must have a service routine defined,
and the SRQ inferrupt must be enabled to initiate the branch to the service routine.

The following program segment shows an example of setting up and enabling an SRQ
interrupt.

100 Hpib=7

11¢ ON INTR Hpib GOSUB Service_routine
120 !

13¢ Mask=2

140 ENABLE INTR Hpib;Mask

Since IBASIC recognizes only SRQ interrupts, the value assigned to the mask is meaningless.
However, a mask value may be present as a placeholder for compatibility with IIP Series
BASIC programs.

8-8 Interfacing with External Devices

When an SRQ) interrupt is generated by any device on the bus, the program branches to the
service routine when the current line is exited (either when the line’s execution is finished or
when the line is exited by a call to a user-defined function). The service routine, in general,
must perform the following operations:

Determine which device(s) are requesting service
Determine what action is requested

Clear the SRQ) line

Perform the requested action

Re-enable interrupts

Return to the former task (if applicable)

e

Note The ON INTR statement must always precede the ENABLE INTR statement when
the two are used in the same program.

Servicing SRQ Interrupts

The SRQ is a level-sensitive interrupt; in other words, if an SRQ is present momentarily

but does not remain long enough to be sensed by the controller, an interrupt will not be
generated. The level-sensitive nature of the SRQ line also has further implications, which are
described in the following paragraphs.

Example

Assume that only one device is currently on the bus. The following service routine serially
polls the device requesting service and clears the interrupt request. In this case, the controller
does not have to determine which device was requesting service because only one device is
present. Since only service request interrupts are enabled in IBASIC, the type of interrupt
does not need to be determined either. The service is performed, and the SRQ event is
re-enabled to generate subsequent interrupts.

BOO Serv_rtn: Ser_poll=SPOLL(@Device)
510 ENTER @Device;Value

520 PRINT Value

530 ENABLE INTR7 ! Use previous mask.
540 RETURN

The IEEE standard states that when an interrupting device is serially polled, it is to stop
interrupting until a new condition occurs (or the same condition occurs again). To “clear”
the SRQ line, a serial poll must be performed on the device. By performing this serial poll,
the controller acknowledges to the device that it has seen the request for service and is
responding. The device then removes its request for service (by releasing SRQ).

If the SR line had not been released, the controller would have branched to the service
routine immediately upon re-enabling interrupts on this interface. This is due to the
level-sensitive nature of the SRQ) interrupt.

Also note that once an interrupt is sensed and logged, the interface cannot generate another
interrupt until the first interrupt is serviced. The controller disables all subsequent interrupts
from an interface until a pending interrupt is serviced.

Interfacing with External Devices 8.9

Conducting a Serial Poll

A sequential poll of individual devices on the bus is known as a Serial Poll. A byte of
device-specific status is returned in response to a Serial Poll. This byte is called the “Status
Byte” message and, depending on the device, may indicate an overload, a request for service,
or a printer being out of paper. The particular response of each device depends on the device.

The SPOLL function performs a Serial Poll of the specified device; the program must currently
be the active controller in order to execute this function.

Examples

ASSIGN @Device TO 700
Status_byte=SPOLL(@Device)

Spoll_724=SPOLL(724)

The Serial Poll is meaningless for an interface since it must poll individual devices on the
interface. Therefore, primary addressing must be used with the SPOLL function.

Passing and Regaining Control

Active control of the bus can be passed between controllers using the PASS CONTRGL command.
The following statements first define the HP-IB interface’s select code and the new active
controller’s primary address and then pass control to that controller.

100 Hp.ib=7
110 New_ac_addr=20
120 PASS CONTROL 100*Hp_ib+New_ac_addr

Once the new active controller has accepted active control, the controlier passing control
assumes the role of a non-active controller on the specified HP-IB interface. The concept of
using pass control with IBASIC is discussed in the next section, “The IBASIC HP-IB Model.”

8-10 Interfacing with External Devices

The IBASIC HP-IB Model

The fact that IBASIC resides in, and coexists with an instrument poses a large set of possible
interactions, both internal to the instrument and externally with other controllers and
instruments. This section defines the principal players and rules of order when IBASIC is
running within the host instrument.

External and Internal Busses

There is physically only one HP-IB port and one HP-IB address for the analyzer. IBASIC has
access to two HP-IB ports: the “real” external port (select code 7) and a “virtual” internal
port (select code 8), through which it communicates with the analyzer.

The analyzer has only one output buffer, one input buffer and one set of status registers.
Commands and data from both ports are placed in the same input buffer and data read out of
both ports comes from the same output buffer. The instrument will not provide any kind of
arbitration between an external controller and an IBASIC program.

The analyzer always behaves as if there is only one controller. If an IBASIC program is
running, it is assumed to be the controller and therefore will receive all SRQs from the host
instrument (via the internal port).

Service Request Indicators

An external controller may perform a serial poll (SPOLL) at any time without affecting a
running IBASIC program. There are two Service Request Indicators (SRI) - one for the
external port and one for the internal port. The internal SRI can only be cleared by an
IBASIC program performing an SPOLL on device 800. The external SRI can only be cleared
by an SPOLL from an external controller and can only be set when there is not an active
IBASIC program.

The two SRI’s will be set to their OR’d value when a program starts, and again when it
finishes. This assures that any pending SRQ’s can be serviced by the instrument’s new
controller.

The pausing or termination of a program will cause the Program Running bit in the Device
Status register to go low. This can be used to generate an external SRQ. (For an example, see
the DUALCTLR example in Chapter 11, “Example Programs.”)

Interfacing with External Devices 8-11

IBASIC as the Active Controller

The IBASIC program is always the active controller on the internal interface (select code

8). When a program starts running, the HP-IB controller status of the instrument is
automatically passed to the program. For example, if the instrument is set as System
Controller, a program running in the instrument automatically becomes system controller and
active controlier on the external bus and the instrument relinquishes active control. When the
program stops, the instrument regains active control.

Also, if an instrument set as Talker/Listener is passed control from an external coniroller, any
program running in the instrument becomes active controller on the external interface.

Thus, there are two cases where a program running in an instrument can be active controller
on the external interface:

w When the host instrument is set as System Controller and the program has not passed
control

m When the host instrument is set as Talker/Listener and the instrument has been passed
control from an external controller.

Passing Active Control to the instrument

The only way that the analyzer can gain active control of the external interface while a
program is running is if the program is currently the active controller on select code 7 and
passes control to the instrument. Normally, the active controller on the 7 bus can pass control
to any device on the interface by using the statement

PASS CONTROL 7xx

where "xx" represents the address of the device on the bus. Because an IBASIC program does
not interface with the host instrument over select code 7, a different method is used to pass
control in this case. To pass active control of the external interface from an IBASIC program
to the host instrument, use the statement

PASS CONTROL 8xx

where “xx” represents any two digit number from 00 to 99. This allows the instrument to
control external plotters, printers and disk drives. When the instrument is finished with its
HP-IB control activity, it automatically passes control back to the program.

Note Control over the internal bus is used to govern access to the external bus.
When the instrument is given control over the internal bus, it is actually given
access 1o the external HP-IB hardware.

8-12 Interfacing with External Devices

IBASIC as a Non-Active Controller

IBASIC programs are always the active controller on the internal interface. There are two
cases where an IBASIC program does not have control of the external HP-IB interface:

m When the host instrument is set as Talker/Listener and active control has NOT been passed
from an external device

m When the host instrument is set as System Controller and the program has passed control
to either the host instrument or another device on the external interface

In both of these cases, the program cannot perform activities of any kind on the external
interface.

Note An IBASIC program cannot act as a device on the external bus. To
' communicate with an external controller, the IBASIC program must be
active controller and the external controller must act as the device (see the
“Interfacing with an External Controller” section that follows).

Interfacing with an External Controller

So far, we have discussed the ability to interface IBASIC programs with a network of external
devices using the HP-1IB. The idea of including an external controller in that network, and
interfacing an IBASIC program with a program running in that computer presents some new
possibilities.

External controller programs car interface with IBASIC programs (referred to as “internal
programs”) over HP-IB in two basic ways:

First, the two programs can pass data back and forth using simple OUTPUT and ENTER
statements. This requires coordination of both the internal and external programs and also
requires that the internal program be the active controller during the interaction. To get an
internal program and an external program to work together successfully, you should have a
good understanding of the HP-IB model, presented earlier in this chapter.

Second, the external program can make use of the extensive set of analyzer HP-IB commands
that interface with IBASIC programs. These mnemonics fall under the subsystern PROGram
and allow the external controller to remotely perform many of the IBASIC front panel
activities. This includes the ability to run, stop, pause, continue and delete an internal
program. You can also remotely query or set the values of numeric and string variables.

Also included in the analyzer HP-IB command set are commands that allow you to transfer
programs and program data to and from the instrument. Programs can be transferred
{uploaded and downloaded) between an external controller and the program buffer in the
instrument, and data can be transferred between an external program and a non-running
internal program by setting and querying internal program variables. These SCPI mnemonics
are described in the Programmer’s Guide.

Also, refer to example programs included on the IBASIC Ezample Programs Disk: DUALCTRL,
TRICTRL, UPLOAD and DOWNLOAD. These programs demonstrate using IBASIC with an external
controller.

Interfacing with External Devices 8-13

Synchronizing IBASIC with an External Coniroller

Using OUTPUT and ENTER statements

Commands sent to the analyzer with OUTPUT and ENTER statements from IBASIC and
from the external controller at the same time must be synchronized by the programmer.
These commands cannot be allowed to overlap. Overlapped commands sent from the external
controller and IBASIC will result in unpredictable behavior or deadlocks.

For example:
If the external controller executes:

OUTPUT 716; “<command>”

and IBASIC simultaneously executes:

QUTPUT 800 ; “<command>”

the results are unpredictable.

To avoid overlapped commands, you must ensure that only the controller is allowed to send
commands or only IBASIC is allowed to send commands at any one time. One possible
method to avoid overlap is described below. For this method, when the respective controller is
done sending commands, the other controller is informed. The alternate controller then may
begin sending commands. After each set of commands is completed, the alternate controller is
informed and given a signal to send commands to the analyzer. See example program TRICTRL
in Chapter 11.

Using Status information

Status information must also be synchronized between the IBASIC program and a program
running on an external controller. The status information is shared between these programs.
Commands which affect the status information should not overlap between the IBASIC
program and the external controller.

For example:
From an external controller:
JUTPUT 716;"< command >;*0PC?"
ENTER 716;0pc
From IBASIC, simultaneously execute:
OUTPUT 800G ;"*CL3"

may cause the external controller to not complete execution. The *CLS command clears status
information which the external controller may be waiting for. The commands which affect
status information include *0PC, *0PC?, *WAT, *CLS, *RST, *SRE, *ESE, and STAT:PRES.

8-14 Interfacing with External Devices

Design Rules
Design your IBASIC and External Controller with the following rules:
= Do not overlap commands between the external controller and IBASIC.

® Do not change status information which is expected by the alternate controlier. Design
programs such that status information does not overlap.

See the example program, TRICTRL, which implements a synchronization protocol between an
external controller and two instruments running IBASIC programs.

Transferring Data Between Programs

Using OUTPUT and ENTER statements

All data sent from an external controller to the instrument’s external port is received by the
instrument and not by any program running in it. Therefore, a non-active controlier IBASIC
program can never enter or output data via the external interface. This means that in order
to pass data between an external controller and an internal program using OUTPUT and ENTER
statements, the internal program must be given active control and the external controller must
become the non-active controller. HP IBASIC for Windows and HP BASIC controllers have
the ability to enter and output data via HP-IB while acting as a non-active controiler.

Note Moving data through the HP-IB and running a measurement in the host
instrument at the same time can slow both operations significantly.

It is recommended that you do not perform these operations simultaneously.

Orne method of passing data between the two controllers is to set the instrument as

Talker /Listener and run a program on the external controller that starts the IBASIC program
and passes control to it. The IBASIC program can then output data to, and enter data from,
the external controller. Two programs, that are listed in Chapter 11, “Example Programs,”
demonstrate how to transfer data between an internal program and an external controller
program. The first program, DATA_EXT, is run from an external controller. It assumes that

a disk containing the corresponding IBASIC program DATA_INT is in the disk drive of the
analyzer. It remotely loads the IBASIC program, starts it and then transfers active control
to it. The IBASIC program DATA_INT, with active control of the interface, queries the
external program for name of the drive to catalog, and then outputs the catalogued string to
the external program and passes active control back. After receiving the catalog data, the
external program goes into a loop {line 1080) executing a command that continues to generate
an error until the host computer again becomes active controller when control is passed back.

Interfacing with External Devices 8-15

Setting and Querying Variables

Another means of transferring data between an internal and an external program involves
the ability to set and query internal program variables from an external program. The
"PROGram[:SELected] :NUMBer" and "PROGram[:SELected] :STRing" mnemonics (and their
query counterparts) are part of the analyzer HP-IB commands. The internal program must
not be running when these commands are executed.

The command
PROG:NUMB < string >, < value >

sets the value of a numeric variable in the program. The command
PROG:STR < string >, < value >

sets the value of a string variable in the program. In both the PROG:NUMB and PROG:STR
commands and queries, < string > is the variable name and must be string data (in quotes).
In the PROG:STR command, < value > is also string data (in quotes).

Numeric and string parameters can also be queried. The query
PROG:NUMBer? < string >
returns the value of the specified numeric variable.

Arrays of REAL or INTEGER type may be sent or queried but arrays of strings are not allowed.
Array elements are separated by commas.

Examples

QUTPUT 716;"PROG: NUMBER ’Test’,99"
OUTPUT @Ibasic;"PROG:STRING ’A$’,’String Data’"

QUTPUT 716; "PROG:NUMB? ’ Iarray (%)’ "

The following program segment sends both numeric and string variable queries and enters the
resulting data:

10 ASSIGN @Prog TO 716

20 OUTPUT @Prog;"FORM ASCII,3"

30 (QUTPUT @Prog; "PROG:NUMB? 'Test*"

40 ENTER @Prog; Testval

B0 PRINT "The value of the variable Test = ";Testval
80 OUTPUT @Prog;"PROG:STR? ’A$°"

70 ENTER @Prog; Str$

80 PRINT "4$ = ¥;Str$

90 END

8-16 Interfacing with External Devices

Downloading and Uploading Programs

Programs can be transferred between an external controller and program memory using

the HP-IB download command "PROGram[:5ELected] :DEFine" and its upload query
"PROGram| :SELected] :DEFine?". Programs that use these mnemonics are run in the external
controller. i

Downloading

Program data transferred (downloaded) from the external controller to the instrument is
always transferred as an “arbitrary block.” The arbitrary block may be a definite length or
indefinite length block. The indefinite length block is by far the easiest and is simply a block
of data that begins with the characters "#0" preceding the first line and ends with a line-feed
character accompanied by an EOI signal on the HP-IB interface.

When using the mnemonic PROG: DEF to download program lines, the #0 must not be followed
by a line-feed. Each program line must have a line number at its beginning and a line-feed at
its end. To end the arbitrary block of program lines, a single line-feed must be output with
the QUTPUT END parameter, which sends the EOI (End or Identify) signal on the HP-IB control
lines.

Refer to Chapter 11, “Example Programs” for a listing of the example program DOWNLOAD.

Notice that the OUTPUT statement on line 460 is terminated with a semicolon. This suppresses
the line-feed that would otherwise occur.

As each line of the program is downloaded it is checked for syntax.

If an error is found, the error message is displayed on the CRT and the line is commented and
checked for syntax again. If it still causes an error (for example the line may be too long) the
line is discarded.

Any lines that currently exist in the memory buffer will remain unless they are overwritten by
downloaded program lines. This makes it easy to edit lines in an external controller and then
download only the edited lines into an existing program. If you want to completely overwrite
the current program in memory, you must delete the program first. This can be done remotely
using the extended command PROG:DEL:ALL (see line 350).

Interfacing with External Devices 8-17

Uploading

‘The mnemonic PROG:DEF? is used to upload a program from the program buffer. The entire
program is then returned as a definite length arbitrary block. A definite length block starts
with the "#" character followed by a single digit defining the number of following digits to
read as the block length.

Refer to Chapter 11, “Example Programs” for a listing of the example program UPLOAD, which
demonsirates an uploading routine run on an external controller.

The subroutine Openfile (lines 570 through 770) creates an ASCII file to save the uploaded
program to. The number of 256 byte records deciared in the CREATE ASCIT statement (line
730) is simply the file size (declared in the definite block header) divided by 256. Line 720
accommodates any remainder in this calculation by increasing the file size number by one
record if any remainder exists.

Although this simple method works for many uploaded programs, there may still be a problem
with the file size caused by the OUTPUT statement in line 490. This is because every ASCII line
in a LIF file contains a two byte length header and possibly one additional pad byte to make
the length an even number of bytes. These extra bytes are not included in the definite length
block header information. You can account for this extra overhead by allocating an extra 10
to 15 percent of space when you create the ASCII file. For example, the Openfile subroutine
could be rewritten as:

570 SUB Openfile(@File,Filename$,Fsize)

68C¢ ON ERROR GOTO Upenerr

715 FsizesFsize+(Fsizex0.15)

T20 IF Fsize MOD 256>0 THEN Fsize=Fsize+2b6
730 CREATE ASCII Filename$.Fsize DIV 256

8-18 Interfacing with External Devices

9

Using Subprograms

Analyzer products shipped with the IBASIC option can run subprograms. The subprograms
may be user-created or built-in.

User-Created Subprograms

You can use the LOADSUB keyword with subprograms of your own creation. LOADSUB
enables you to append subprograms to other programs and is supported as described in the
RMB manual. When using LOADSUB, keep in mind the following:

m Subprograms must be stored to files using the STORE keyword when first created.

Subprograms may be stored from the external keyboard or from the front panel if the
[File Type] format is BIN.

m BIN type files are generally not transportable between the analyzer and other development
systems (only ASCII files are compatible with other systems).

Typical examples of LOAD/STORE:
From an external keyboard:
LOAD “MYFILE”
STORE “MYFILE”

From the front panel:

Save/Recall

Typical examples of LOADSUB:
LOADSUB subprogram_name FROM “filename”
LOADSUB ALL FROM “filename”

User-created subprograms are appended to the end of the BASIC program currently stored in
the EDIT buffer.

Using Subprograms 9-1

Built-In High-Speed Subprograms

You can use LOADSUB to access pre-compiled routines stored as instrument firmware

in internal memory. Any IBASIC program running on the analyzer can access these
subprograms; programs running on external computers cannot. The external program must
use the equivalent code listed in the table below in place of & built-in subprogram.

IBASIC programs which use the built-in subprograms are simpler and run faster. For
example, most data transfer operations run twice as fast when using the built-in subprograms;
math operations run many times faster. Built-in subprograms are stored in memory
designated as “MEM,0,0”.

'f'o access a subprogram, the subprogram first must be loaded into the main program using the
LOADSUB keyword. The LOADSUB keyword requires a filename be specified from which to
load the subprogram. Three built-in files are “XFER”, “MATH”, and “RPG”.

x “XFER” file adds support to transfer trace data between the instrument and the IBASIC
program.

® “MATH” file adds high speed support for complex array operations.

= “RPG” file adds fast RPG (rotary pulse generator — front panel knob) response for
markers.

LOADSUB <Subprogram name> FROM <Filename:MEM,0,0> loads the named subprogram
from the built-in file “FILENAME”,

LOADSUB ALL FROM <Filename:MEM,0,0> loads all the subprograms in the named
built-in file “FILENAME”. See the following table for subprogram names within the files
“XFER”, “MATH”, and “RPG”.

9-2 Using Subprograms

Built-in Subprogram Description (Filenames found in :¥EX,0,0)

Filename

Subprogram Name (parameter list)

Description

XFER

MATH

Define Cornplex Array

Operations

Define Complex Namber

Operations

BPG

Read_fdata(INTEGER Chan REAL A{*})
Read_fmem(INTEGER Chan,REAL A{*))
Read.cdata(INTEGER Chan,REAL A(*))
Read_cmem(INTEGER Chan,REAL A(*))
Write_fdata{INTEGER Chan,REAL A(*))
Write-fmem(INTEGER Chan,REAL A{*))
Write_cdata(INTEGER Chan,REAL A(*))
Write_cmem{INTEGER Chan,REAL A(*))
Read_rdata(INTEGER Chan,Input$, REAL A(*))
Write.rdata(INTEGER Chan,Tnput$, REAL A(*))
Read—corr{INTEGER Chan, N,REAL A(*))
Write_corr(INTEGER Chan, N,REAL A(*))

Cmplx.mag{REAL Cdata{*},Mag(*), INTEGER Sz)

Cmplx-arg(REAL Cdata{®),Arg(*) INTEGER Sz) lArg of

complex array

Cmplx—conjg{REAL A(*),B(*)} IComplex conj of array A
o B

Cadd(REAL Opi(*),INTEGER Rowl,REAL
Op2(™),INTEGER Row2,REAL Ans{*},INTEGER
Rowans)

Osub(REAL Op1(*),INTEGER Row!,REAL
Op2(*),INTEGER Row2,REAL Ans(*),INTEGER
Rowans)

Cmul(REAL Op1(*),INTEGER Row1,REAL
Op2(*},INTEGER. Row2,REAL Aps(*},INTEGER
Rowans)

Cdiv{REAL Opl1(*),INTEGER Rowl REAL
Op2(*},INTEGER Row2,REAL Ans{*},INTEGER
Howans)

SUB Rpg-function (INTEGER function)

Read real formatted data
Head real formatted mem
Read complex data

Read complex memory
Write real formatted data
Write real formatted mem.
Write complex data
Write complex mermory
Read raw complex data
Write raw complex data
Head complex exror coef.

Write complex error coef,

Mag of complex array

Complex Ans=Opl+0p2

Complex Ans=0pl1.-Op2

Comples Ans=0pl1*0p2

Complex Ans=Opl/0Op2

Redirect RPG & STEP keys
function

O=normal
i=Actv MKR & INPUT

2=Actv MKR & LABELS

Using Subprograms 9-3

Example Programs

1 Ezample use of built in subprograms
10 LOADSUB Read_fdata FROM "XFER:MEM,0,0" Appends Read_data sub pro-

gram to end of this program.

This subprogram can now be

called.

20

30

40

50 REAL Trace_array(1:201) Reads Channel 1 dala into

60 Read _fdata(1, Trace_array(*)) Trace_array(*)

70 LOADSUB ALL FROM "MATH:MEW,0,0" ‘ Appends all math subprograms
defined in “MATH” to the
end of this program.

80 END

90 SUB Read_fdata(INTEGER Chan,REAL A(*)) Read real formatied daia.

100 SUB Cmplx._mag(REAL Cdata{*),Mag(*),INTEGER Sz) Mag of complex array.
110 SUB Cmplx_arg(REAL Cdata{*),Arg(+*),INTEGER Sz) Arg of complex array.
120 .

Note Built in subprograms cannot be edited since they are compiled and built into
the firmware. However, any subprogram can be deleted by the DELSUB
keyword support in revision 2 IBASIC.

RUNTIME Buiit in subprogram Errors

Number Description

8,9,16 Improper or inconsistent dimensions found which specify array size. Using the wrong
number of subscripts when referencing an array element.

983 Wrong type or number of parameters. An irnpfoper parameter list for a machine
resident function.

Avoiding Multiple Loads of Subprograms

To avoid multiple LOADS of a subprogram which has already been loaded, the following
example may be used.

10 ON ERROR GOTO 30

20 DELSUB Read_fdata

30 LOADSUB Read_fdata FROM "XFER:MEM,O,0"
40 OFF ERRCGR

8-4 Using Subprograms

10

IBASIC Keyword Summary

This chapter summarizes the IIP Instrument BASIC keyword implementation in the
analyzer. Table 10-1 is alphabetical. It indicates the type of support for each entry and notes
exceptions, if any. Exceptions are major differences between the keywords descriptions in

the “HP Instrument BASIC Language Reference” and their implementation in the analyzer.
When differences are too extensive to be summarized, see the “HP Instrument BASIC
Language Reference.”

Table 10-2 contains the same information as Table 10-1, but is organized by category.

Tabie 10-1. Alphabetical List of IBASIC Keywords

HP IBASIC Keyword Support Exceptions
FP=Froat Panel
EK=External
Keyboard
P=Programmable

& FP.EK,P

* EK,P

+ EK,P

- EK,P

/ K.P

< <=, <>, =, > > P

ABORT EK,P Select Code = 7,8,8,15

ABS EK,P

ACS FP.EK,P

ALLOCATE EK,P

AND FPEK,P

ASN FPEK,P

ASSIGN EK,P

ATN FPEK,P

AXES ER,P

BEEP EK,P

BINAND FP,EK,P

BINCMP FP.EK,P

BINEOR FPEK,P

BINIOR FP,EK,P

BIT FPEK,P

IBASIC Keyword Summary 10-1

Table 10-1. Alphabeticai List of IBASIC Keywords {continued)

HP IBASIC Keyword Support Exceptions
FP=Front Panel
EK=External
Keyboard
P=Programmable

CALL EK,P
CASE P
CASE ELSE P
CAT FPEK,P Supports 58 columns. See manual.
CHRS FPEK,P
CLEAR EKP Select Code = 7,8,9,15
CLEAR SCREEN EK,P
CLS ER,P
COM P
CONT EK,FP Line number support from EK only
COoPY FP.EK,P
COPYLINES EK
COS FP.EK.P Abs vals less than 1.7083127722e-+10
CREATE
CREATE ASCIHI EK.P
CREATE BDAT EK.P
CREATE DIR
CRT EK.P ENTER CRI(ENTER 1) not supported
CSIZE EK,P
DATA P
DATE EK.P
DATE$ EK,P
DEALLOCATE EK,P
DEF FN P
DEG FP.EK.P
DEL FP,EK Front Panel deletes only 1 line
DELSUB EK.P
DET EK,P
DIM P
DISABLE P
DISABLE INTR P huterface Select Code == 7 or 8
bIsp EK.P
DIV EK.,P
DOT EK,P
DRAW EK,P
10-2 IBASIC Keyword Summary

Table 10-1. Alphabetical List of IBASIC Keywords (continued)

HP IBASIC Keyword

Support
FP=Front Panel
EK=—External
Keyboard

P=Programmable

Exceptions

DROUND
DUMP ALPHA
DVAL
DVALS

EDIT

ELSE
ENABLE
ENABLE INTR
END

END IF

END LOOP
END SELECT
END WHILE
ENTER
ERRL()
ERRLN()
ERRM$
ERRN

EXIT IF
EXOR

EXP

FN

FNEND

FOR NEXT
FRACT
FRAME
GCLEAR
GET

GINIT
GOSUB
GOTO

GRID

IDRAW

IF THEN

EK,P
none
FP.EK,P
FP,EK,P
FP,EK

=
oA " T e TT T YT
g

EK,P
EK.P
EK,P

P

FP,EK,P

EK,P
p
P
P

EK,P

EK,P

EK,P

FP,EK,P

EK.P
P
p

EK,P

EK,P
P

Use HPIB command

Front Panel EDI'Ts default line #

Interface Select Code = 7 or 8

IBASIC Keyward Summary 10-3

Table 10-1. Alghabetical List of IBASIC Keywords {continued)

HP IBASIC Keyword Support Exceptions
FP=Front Panel
EK=Exiernal
Keyboard
P=Programmable

IMAGE P
IMOVE EK,P
INDENT EK
INITIALIZE FP,EK.P
INPUT P See Manual.
INT EK.P
INTEGER P
IPLOT EK,P
IVAL FP.EK.P
IVALS FP.EK.P
KBD P Heturns select code =2,
LABEL EXK,P
LDIR EK,P
LEN FP.EK,P
LET EX,P
LGT EX,P
LIST EXK,P Valid Device Selectors
LOAD FP,EK,P
LOADSUB FP,EK,P
LOADSURB ALL FROM ... FP,EK.P
LOCAL EK.P Select Code 7 only.
LOCAL LOCKOUT EK.P Select Code 7 only.
LOG EK.P
LOOP P
LORG EK,P
LWCS FP,EK,P
MAT EK,P
MAT REORDER EX.,P
MAT REORDER ... BY EK,P
MAT foo=CSUM(bar) EK.P
MAT foo=IDN EK.,P
MAT foo=INV(bar) EXK.P
MAT foo=RSUM(bar EXK,P

10-4 IBASIC Keyword Summary

Tahle 10-1. Alphabetical List of IBASIC Keywords {(continued)

HP IBASIC Keyword Support Exceptions
FP=Front Panel
EK=External
Keyboard
P=Programmable

MAX EK,P
MAXLEN FPEKP
MAXREAL EK.P
MIN EK.P
MINREAL EK.P
MOD EK.P
MOCDULO EK.P
MOVE EK,P
MOVELINES EK
M1 FP.EK.P MSI may be altered by the instr.
NOT FP.EK,P
NUM FP.EK,P
ON|OFF CYCLE P
ON|OFF ERROR P
ON|OFF INTR P Interface Select Code = T or 8
ON|OFF KEY P Key selectors 1 through 7
ON|OFF TIMEQUT P Interface Select Code = 7 or 8§
OPTION BASE P
OR FP,EK,P
OUTPUT EK,P Select Code 1,7,8
PASS CONTROL EK,P Select Code 7 or 8
PAUSE EX,FPP
PDIR EK,P
PEN EK,P O=erase l=draw
PENUP EX.P
PI EK,P
PIVOT EK,P
PLOT EKP
POLYGON EK.P FILL not supported. Scaling diffs.
POLYLINE EK.P
POS FP.EK,P
PRINT EK.P
PRINTER IS EK,P
PROUND EX,P

IBASIC Keyword Summary 10-5

Table 10-1. Alphabetical List of IBASIC Keywords {(continued)

HP IBASIC Keyword Support Exceptions
FP=Front Panel
EK=External
Keyboard
P=Programmable

PRT EK,P
FURGE FP.EK,P
RAD FP,EK,P
RANDOMIZE EK.P
RATIO EK,P
RE-SAVE FP,EK,P
RE-STORE FP.EX,P
READ EK.P
READIO EKP Select Code ¢ or 15. See manual.
REAL P
RECTANGLE EK,P FILL not supported. Scaling diffs.
REDIM EK.P
REM P
REMOTE EK.P Select Code 7
REN EX
RENAME FP.EK,P
REPEAT UNTIL P
RESTORE P
RETURN P
REV$ FP,EK.P
RND EK,P
ROTATE FP,EK,P
RPLOT EK,P Fill not supported. Scaling diffs.
RPT$ FP.EK,P
RUN EK,FPP
SAVE FP.EK,P
SCRATCH FP.EK Front Panel executes SCRATCH A.
SECURE FPEK
SELECT P
SET TIME foo FP,EK,P
SET TIMEDATE foo EX.P
SGN EX.P
SHIFT FP,EK,P
SHOW EK.P

10-6 IBASIC Keyword Summary

Tabie 10-1. Alphabetical List of IBASIC Keywords (continued)

HP IBASIC Keyword Support Exceptions
FP=Front Panel
EEX=External
Keyboard
P=Programmable

SIN FPEK.P
SPOLL EK,P Select Code 7
S5QR EK,P
SQRT EK,P
STEP ‘ FP,EK
STOP N
STORE FPEK,P
SUB P
SUBEND P
SUBEXIT P
SUM EK.P
SYSTEM PRIORITY P
SYSTEMS EK,P
TAB() EK P
TABXY() ' EK,P
TAN FPEK,P
TIME EK,P
TIMES EK,P
TRIGGER EK,P Select Code 7
TRIMS FP.EK,P
TRN EK,P
UPCs FP,EK,P
USING EK,P
VAL FPEK,P
VALS FP,EK,P
VIEWPORT EK,P
WAIT EK,P
WHERE EK,P
WHILE P
WIDTH EK,P
WINDOW EK,P
WRITEIO EK,P Select Code 9 or 15. See manual,
B EK,P

IBASIC Keyword Summary 10.7

Table 10-2. Categorical List of IBASIC Keywords

HP Instrument BASIC Keyword

Support
FP=Froni Panel
EX=External
Keyboard
P=Programmable

Exceptions

Program Entry/Editing
COPYLINES
DEL
DELSUB
EDIT

INDENT
LIST

MOVELINES
REM
REN
SECURE
Program Debugping
ERRL()
ERRLN()
ERRM$
ERRN
STEP
Memory Allocation
ALLOCATE
COM
DEALLOCATE
DELSUB
DIM
INTEGER
LOADSUB
OPTION BASE
REAL
SCRATCH
Relational Operators
<=, =, e
General Math,

*

5

/

EK
FP,EK
EK
FP,EK

EK
EK,P

EK
P
EX
FP.EK

EKP
EK.P
EK.P
FPEK

EK,P
EK,P
EK,P
EK,P

Front Panel deletes only 1 line.

Front Panel EDITs default line #. See
Manual.

Valid Device Selectors #7xx, #7xxxx,
#9, 415,

Front Panel executes SCRATCH A.

10-8 _ IBASIC Keyword Summary

Table 16-2. Categorical List of IBASIC Keywords (continured)

HP Instrument BASIC Keyword

Suppert

FP=Froni Panel

FEK=External
Keyboard

P=Programmable

Exceptions

ABS

DIV
DROUND
EXP
FRACT
INT

LET

LGT

LOG

MAX
MAXREAL
MIN
MINREAL
MOD
MODULO
PI
PROUND
RANDOMIZE
RND

SGN

SQR
SQRT

Binary Functions
BINAND
BINCMP
BINEOR,
BINIOR.

BIT
ROTATE
SHIFT

Trigonometric Operations
ACS
ASN
ATN
cos
DEG

EK,P
EK,P
EK,P
EK,P
EK,P
FK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P

FP,EK,P
FP,EK,P
FP,EK,P
FP,EK,P
FP,EK,D
FP,EK,D
FP,EK,P

FP,EK,P
FP,EK,P
FP,EK,P
FP.EK,P
FP,EK,P

Abs vals less than 1.7083127722e+10

IBASIC Keyword Summary 10-9

Table $10-2. Categorical List of IBASIC Keywords (continued)

HP Instrument BASIC Keyword Support Exceptions
FP=Front Panel
EK=External
Keyboard
P=Programmable
RAD FP.EK,P
SIN FP.EK,P
TAN FPEK,P
String Operations
& FPEK,P
CHRS FP.EK,P
DVALS FP,EK,P
DVAL FP.EK,P
IVALS FP.EK,P
IVAL FPEK,P
LEN FPEK,P
LWCS FPEK,P
MAXLEN FP,EK,P
NUM FP,EK,P
POS FP,EK,P
REVS FPEK,P
RPT$ FP,EK,P
TRIMS FP.EK,P
UPC$ FPEK,P
VALS FP.EK,P
VAL FPEK,P
Logieal Operations
AND FPEK,P
EXOR FP.EK,P
NOT FP,EK,P
OR FP,EK,P
Mass Sterage
CAT FPEK.P Supports 58 columns. See manual.
COPY FPEK.P
CREATE
CREATE ASCIT EK.P
CREATE BDAT EK,P
CREATE DIR
GET FP,EK,P

10-10 [IBASIC Keyword Summary

Table 10-2. Categorical List of IBASIC Keywords (continued)

HY Instrument BASIC Keyword Support Exceptions
FP=Front Panel
EK=External
Keyboard
P=Prograrmmable
INITIALIZE " FP,EK.P
LOAD FPEK,P
LOADSUB FPEK.P
LOADSUB ALL FROM ... FPEK.P
M5 FPEK.P MSI may be altered by the instr. When
save/recalling programs to/from DOS
subdirectories.
PURGE FP,EK.P
RE-SAVE FP.EK.P
RENAME FPEK,P
RE-STORE FP,EK,P
SAVE FP,EK,P
STORE FP.EK,P
Program Conirol

CALL EK.P
CASE P
CASE ELSE P
CONT EK,FP Line number support from EK caly
DEF FN P
ELSE P
END P
END IF P
END LOOP P
END SELECT P
END WHILE P
EXIT IF P
FN P
FNEND P
FOR NEXT P
GOSUB P
GOTO P
I¥ THEN P
LooP P
PAUSE EK.,FP.P
REPEAT UNTIL P

IBASIC Keyword Summary 10-11

Table 10-2. Categorical List of IBASIC Keywords (continued)

HP Instrument BASIC Keyword Support Exceptions
FP=Front Panel
EK=External
Keyboard
P==Programmable
RETURN P
RUN EK.FP.P
SELECT P
STOP FP,P
suUB P
SUBEND P
SUBEXIT P
SYSTEMS EK,P
WAIT EK.P
WHILE P
Event Initiated Branching
DISABLE P _
DISABLE INTR P Interface Select Code = 7 or 8.
ENABLE P
ENABLE INTR P Interface Select Code = 7 or 8. Must
not precede an ON INTR statement.
ON|OFF CYCLE P
ON|OFF ERROR P
ON|OFF INTR, P Interface Select Code = T or 8, Must
precede ENABLE INTR statement.
ONIOFF KEY P Key selectors 1 through 7
ON|OFF TIMEOUT P Interface Select Code = 7 or 8
SYSTEM PRIORITY P
Graphics Control
GCLEAR EK,P
GINIT EK,P
RATIO EK,P
SHOW EK,P
VIEWPORT EK,P
WHERE EK,P
WINDOW EK,P
Graphics Plotting
DRAW EK,P
IDRAW EK.P
IMOVE EK.P

10-12 1BASIC Keyword Summary

Table 10-2, Categorical List of IBASIC Keywords (continued)

HP Instrument BASIC Keyword Support Exceptions
FP=Front Panel
EK=External
Keyboard
P=Programmable
IPLOT EK,P
MOVE EK.,P
PDIR EK,P
PEN EK,P O=erase l=draw
PENUP EK,P
PIVOT EK.,P
PLOT EK,P
POLYGON EK,P FILL not supported. Scaling diffs.
POLYLINE FK,P
RECTANGLE EK,P FILL not supported. Scaling diffs.
RPLOT EK,P FILL not supported. Scaling diffs.
Graphies Axis and Labeling
AXES EK.P
CSIZE EK.,P
FRAME EK.P
GRID EK.P
LABEL EK.P
LDIR EK.P
LORG EK.P
HP-1B Control
ABORT EK.P Select Code = 7,8,9,15
CLEAR EK,P - 1 Select Code = 7,8,0,15
LOCAL EK.,P Select Code T only.
LOCAL LOCKOUT _ EK,P Select Code T only.
PASS CONTROL EK.P Select Code 7 or 8
REMOTE FEK.P Select Code 7
SPOLL EK,P Select Code 7
TRIGGER EK,P Select Code 7
Clock and Calendar
DATE EK,P
DATES EK,P
SET TIME foo FP.EK,P
SET TIMEDATE foo EK,P
TIME EK.P
TIMES EK.P

IBASIC Keyword Summary 10-13

Table 10-2. Categorical List of IBASIC Keywords (continued)

HP Instrument BASIC Keyword Support Exceptions
FP=Front Panel
EK=External
Keyboard
P=Programmable

General Device Input/Output

ASSIGN EK.P

BEEP EK,P

CRT EK,P ENTER CRT(ENTER 1} not supported

DATA P

DISP EK,P

ENTER EK,P

IMAGE P

INPUT P See Manual.

KBD P Returns select code =2.

QuUTPUT _ EK,P Select Code 1,7,8

PRINT EK,P

PRINTER IS EK.P

PRT FK,p

READ EK,P

READIO EK,P Select Code 9 or 15. See manual.

RESTORE P

TAB() _ EK.P

TABXY() EK.P

USING EK.P

WIDTH EK,P

WRITEIO EX.P Select Code 8 or 15. See manual.
Display and Keyboard Control

CLEAR SCREEN EX,P

CLS EK,P
Array Operations

DET EK,P

noT EK.P

MAT EK.P

MAT foo=IDN EK.P

MAT foo=INV(bar) EK,P

MAT foo=CSUM(bar) EK,P

MAT foo=RSUM(bar) EK,P

MAT REORDER EK,P

MAT REORDER ... BY EK,P

REDIM EK,P

SUM EK.P

TRN EK,P

10-14 IBASIC Keyword Summary

11

Example Programs

Example Program Summaries

This chapter contains listings of the example programs referred to throughout this manual.
These programs are all available on the IBASIC Ezample Programs Disk that accompanies
this manual.

In addition to these example programs, there are two additional disks of examples for the
analyzer. These disks are the Example Programs Disk — DOS Format and the Ezample
Programs Disk — LIF Format. These disks are included with the network analyzer when it

is delivered. All the programs on these disks are designed to run on the analyzer’s internal
IBASIC controller.

The example programs on the IBASIC Frample Programs Disk, some of which are listed in
this chapter, include the following:

DATA_EXT — Data transfer between internal and external programs

This program is designed to run on an external controller — either HP IBASIC for Windows
running on a PC or HP BASIC running on an HP workstation.

This program demonstrates how to transfer data from an IBASIC program running on the
analyzer to an HP BASIC or IBASIC program running externally. It loads a program into the
HP 8711, runs it, sets a variable and then gives it control of the bus. This program then acts
as a device on the bus {sending and receiving data).

DATA_INT — Data transfer between internal and external programs
This program is designed to run on the analyzer’s internal IBASIC controller.

This program demonstrates how to transfer data to and from an external controller. In
this example 2 catalog listing is transferred from the analyzer to the external controller.
A numeric variable value is also downloaded from the external controller to the analyzer’s
program.

DOWNLOAD — Download program to analyzer

This program demonstrates how to download an IBASIC program to the analyzer. It is
designed (in HP BASIC or HP IBASIC for Windows) to run on an external workstation
or PC.

Example Programs 11-1

DRAWS871X — Drawing setup diagrams

This program draws the network analyzer and a device under test to the full screen IBASIC
display partition. The drawing can be scaled to fit the application. This program uses the
analyzer’s graphics commands for drawing. To use the IBASIC drawing commands, see the
“BARCODE” program.

DUALCTRL — Two controller operation

This program demonstrates how the external controller and HP IBASIC can work together. It
is designed to run on an external controller (in HP BASIC or HP IBASIC for Windows}. The
program downloads an IBASIC program to the analyzer and runs it twice. After each run,
two program variables are read from the analyzer and displayed.

REPORT — Using the parallel port

This program uses the analyzer to generate a report, making a hardcopy on a printer
connected to the paraliel port. It uses a subprogram to send the output to the parallel port
one line at a time. Before using this program, be sure that your printer is configured to ignore
the Printer_select Centronics signal, since the WRITE10 command does not assert this signal.

TRICTRL — External controller with local IBASIC controllers

This example program demonstrates how an external controller can be used with two
instruments running IBASIC. Run this program on an external controlier. Connect two
instruments via HP-IB cables to the external controller. Set one instrument to address 16, set
the other instrument to address 18.

This program insures that only the analyzer or the local IBASIC is sending SCPI commands
at one time. This is one possible implementation of synchronizing the analyzer and a
controller. Refer to “Auntomating Measurements” in the User’s Guide.

The external controller is responsible for downloading the IBASIC program to each analyzer.
The external controller sets the status reporting to send a SRQ) whenever a user requested
service request occurs.

When all instrument configuration has completed, the external controller sends a “run
program” command to each analyzer and then goes into an idle loop. The external controlier
remains in the idle loop until either instrument sends an SRQ.

While the external controller is idle, each instrument can freely send various SCPI commands.
Each instrument may ask for service by triggering an SRQ. Once a SRQ has been triggered,
the instrument must remain in an idle loop, until the external controller indicates it is done
servicing the SRQ. This is done using the program variable “Ctir_flag”. The flag is cleared
when the external controller is done and has returned to its idle loop.

11-2 Example Programs

UPLOAD — Upload program from analyzer

This program uploads the IBASIC program in the analyzer’s program huffer to an ASCII file
on the external controller’s current mass storage device.

USERBEG — Set up user-defined

This program creates oftkeys which allow the user to Save or Recall one of
two instrument states, set the marker to maximum, set the scale/div, and compute some
measurement statistics at the marker.

USERBEG1 — The default

The default - program is created automatically when there is no IBASIC program
installed. In It program, softkey 3 is defined to be the marker-to-max function;
softkey 4 prompts the user for a title, and also enables the clock. You may edit this program
to change the functions you need.

USERBEG2 — Fast recall of instrument states

This example program demonstrates the fast recall of previously defined instrument states.
The instrument states SETUP1, SETUP2, and SETUP3 must have been previously saved
to the analyzer’s internal non-volatile RAM disk. Load the program into the analyzer.

Then press the key. Enable the user-defined by pressing

When s enabled, the softkeys will be labeled “Setupl,” “Setup2,” and
“Setup3.” To recall each setup, select the appropriate softkey.

USER_BIT — Using the USER bit

This program demonstrates how to read and write to the USER bit. The USER bit is a
TTL signal accessible by a BNC connector on the analyzer’s rear panel. IBASIC’s graphics
commands are used to draw the USER bit value to the display.

USERKEYS — Customized softkeys

This program provides an example of how the analyzer’s softkeys can be customized. The
example demonstrates how to sel up six instrument states, store them to the analyzer’s
internal memory, and setup two interactive softkey menus to choose between them.

Exampie Programs 11-3

BARCODE, STATS, DATALOG — Bar Code Programs

You may use bar code readers to simplify your measurement setups. The HPCK-1210
KeyWand scanner or compatible bar code scanner will work with the analyzer. Connect your
bar code scanner to the DIN keyboard connector. You may connect a keyboard or other DIN
key input device in parallel with the bar code scanner. The bar code scanner will work in
place of, or in addition to, your keyboard.

The INPUT statement is used to read the bar code from the scanner. When the input
statement is encountered, the program will wait until the user has completed an input. The
input is completed whenever a carriage return is received from the keyboard or a bar code has
been successfully scanned by the bar code scanner.

The following three programs, designed to run on the analyzer’s internal IBASIC controller,
demonstrate the use of bar code scanner applications as well as other useful applications.
While a bar code scanner is useful in demonstrating these programs, it is not required; one
can simply press ENTER and the program will input default values. Sample bar codes are
provided for experimentation at the end of this chapter.

The three programs are as follows:

BARCODE - This program demonstrates basic bar code scanning to select one of three filter
setups depending upon what is scanned. RF stimulus is set and response limits are read, set
and tested for each device. Depending upon result, the program prints “PASS” or “FAIL” on
the CRT. Most useful in this program is a subprogram to draw an analyzer representation on
the CRT. This code can be re-used in any user application that may require a guided setup.

The analyzer image (and DUT image) can be both scaled to any size, and offset in the X or
Y axis as required. This is an excellent program to familiarize yourself with graphic routines
using IBASIC graphics commands.

STATS - This program first reads a DUT bar code and sets the RF stimulus accordingly. It
then displays a running average of all similar devices and constantly updates the display with
both the current DUT and the current average of all devices tested so far. Also demonstrates
the use of two of the built-in CSUB routines for reading and writing trace data from/to the
analyzer.

DATALOG - This program will very quickly store measured trace data for one of three

filters to internal analyzer memory in a format that can be read by spreadsheet programs

for further analysis. Because the data is stored to RAM, the time delay inherent with disks

is not an issue; trace data can be stored in a fraction of a second. With 101 data points per
trace selected, the internal memory will hold over 200 device test results. Af this point, the
program automatically transfers the data to disk. Of course, more data points will take
longer to store and fill the memory sooner. The program will read the bar code and select the
stimulns accordingly. If then measures the device and upon request, stores it under a unigue
name dependent upon model namber and serial number. Once the internal memory is full, or
at any user requested time, all trace data is transferred to disk.

11-4 Exampte Programs

ADJ_110 — Automated procedure for service adjustment #110 (B* amplitude
correction)

This program is provided as a servicing tool to automate the B* adjustment routine using
IBASIC instead of using an external controller. Description of this program is provided in the
adjustment portion of the service manual. Because this program was not intended to be an
example program and due to its length (>1200 lines), the program listing is not provided here.
However, there are several routines that may be useful in other applications. The following
subprograms and functions may be of particular interest.

FNSelect$ A routine that allows selection of one of many possible choices by scrolling
an arrow down the list of choices. The number of choices may exceed one
screen. The front panel hard keys or knob can be used for scrolling. In
addition, user defined softkeys can also be chosen. The user has the option
of using the front panel keyboard or an external AT style keyboard. With a
slight modification, described within the code, this routine can also be used
on an HP RMB controller (e.g. an HP 9000 Series 300 computer).

FNSel_softkey$ A routine that displays a user defined message and allows the operator to
select one of seven possible softkeys.

FNYes A simple program that displays a user defined question and allows the user
to select a YES or NO answer via the softkeys. Returns the number 1 for
~YES and 0 for NO.

Softpause Another simple routine that displays a user defined message and waits for
the operator to press a RESUME softkey.

Note These routines require the Beeper and/or the Clear._screen subprograms which
are also part of this program. However, both can be replaced with their
IBASIC equivalent commands (BEEP and CLEAR SCREEN).

Example Programs 11-5

Example Program Listings

DATA_EXT — Data transfer between internal and external programs

10 o e e e e e e e
20 !

30 ! BASIC program: DATA_EXT -~ Data transfer {external)
40

50 b This program demonstrates how tc transfer data from
60 ! an IBASIC program running on the HP 8711 to an

70 ! HP BASIC program (or an IBASIC program running

80 ! externally). This program was designed to run on a

1
1
I
1§
3
4
3
90 ! computer or PC. It loads a program inte the HP 8711,
]
£
]
t
1
1
1

100 ! runs it, and then gives it control of the bus.

110 ! This program then acts as a device on the bus;

120 ! sending and receiving data.

130 !

140 ! Before running this program, a disc with the program
150 *DATA_INT’ should be in the HP 8711’s intermal drive.
160 !

170 lemmemm e e e e e e
180 !

190 ! Initialize variables for the interface select code
200 ! and the HP-IB address of the HP 8T11.

210 1

220 Scode=7

230 Address=16

240 Na=5codex100+Address

250 ¢

260 ! Abort any bus traffic, clear the input/output queues
270 ! of the analyzer, clear the analyzer’s status
280 ! registers and the display.

280 !

300 ABORT Scode

310 CLEAR Na

320 DUTPUT Na;"=#CL3"

330 CLEAR SCREEHN

34C¢ !

350 ! Dimension an array to hold the catalog listing.
360 !

370 DIM Directory$(1:100)[85]

3go !

380 ! Prompt the operator te insert the disk in the
400 ! HP 8711, load the program and wait until done.
410 !

420 INPUT "Put disc with program ’DATA_INT' intc the HP 8711.
ess <ENTER>",A$

430 DIBP "Loading program on HP 8711 . . ."

440 QUTPUT Na;"PROG:EXEC GET ""DATA_INT:INTERNAL®"?Y

450 QUTPUT Ha;"*0PCT"

11-6 Example Programs

460

ENTER Na;Opc

470 !

480 ! Read the analyzer’s event status register and
430 ! check for any errors when loading file.

oo !

510 DUTPUT Na;"*ESR?"

520 ENTER Na;Esr

530 IF Esr>0C THEW

540 BEEP

550 DISP "Error cccurred while loading ’DATA_INT’
stopped."

560 STOP

570 END IF

5o !

580 ! Determine the HP-IB address of the controller
600 ! and set the pass contrel back address.

610 !

620 INTEGER Stat,Addr

630 STATUS 7,3;S5tat

640 Addr=BINAND(Stat,31)

650 OUTPUT Ha;"#PCB ";Addr

660 !

670 ! Send the command to run the DATA_INT program.
680 !

690 DISP "Running the program..."

700 DUTPUT Ha;"PROG:STAT RUN"

710 !

720 ! Monitor the program’s status. When it has
T30 ! paused, set the variable for the controller’s
740 ! HP-IB address.

750 !

760 OUTPUT Ha,;"PROG:STAT?"

770 ENTER Na;Prog$

780 IF Prog$"PAUS" THEN GOTOD 760

790 DUTPUT Na;'"PROG:NUMB ’Host’,";Scode*100+Addr
800 OUTPUT HNa;"PROG:STAT CONT™

810 !

820 ! Pass control of the bus to the HP 8711.

830 I

840 PASS CONTROL Na

850 !

860 ! Wait until addressed to talk by the HP 8711,
870 ! then send the name of the disk to catalog.
880 !

830 OUTPUT Scode;":INTERNAL"

900 !

210 ! Wait until addressed to listen by the HP 8711,
920 ! then read the directory from the analyzer.
930 !

940 DISP “"Reading data . . ."

950 ENTER Scode;Directory$(*)

. Program

Example Programs

960

970

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110

1
! Print the catalog to the controller’s display.
!
FOR I=1 TO 100
IF LEN(Directory$(I))>0 THEN PRINT Directory$(I)
NEXT I

]
t Try to return the HP 8711 tc LOCAL control,

! If the analyzer is still the active controller
! an error will be generated and the program

! will loop until control of the bus is received.
i

OF ERROR GOTC 1090
LOCAL Na

DISP ¢

ERD

11-8 Example Programs

DATA_INT — Data transfer between internal and external programs

10 B o e e e e e e e e e
20

30 ! IBASIC program: DATA_INT - Data transfer (internal)
40

50 ! This program demonstrates how to transfer data to

60 ! and from an external controller. In this example a

I
i
i
i
i
70 ! catalog listing is transferred from the HP 8711 to
i
i
!
I
I
I

80 ! the external controller. For more information look
20 ! at the program listing for ’DATA_EXT’.

100 !

110 ! This IBASIC program is intended to run on the

120 ! HP 8711’s internal controllier.

130 !

140 B e e e e e e
160 !

160 ! Dimension an array to hold the catalog listing.

170 !

180 DIM Directory$(1:100)[85]

190

200 Pause the program and wait for the controller to
210 get the ’Host’ variable with its’ HP-IB address.

!
!
!
220 ! The controller continues this program after the
i
t

230 variable has been passed.

240

250 Hosgt=0

260 PAUSE

270 1

280 ! Address the external contrcller to talk, read
290 ! the device to catalog. If the HP 8711 is not
300 ! active controller on the bus an error will occur
310 ! and the program will loop until control is
320 ! received.

330 !

340 ON ERROR GOTO 340
380 ENTER Host;Stor_dev$
360 OFF ERROR

370 !

380 ! Catalog the requested storage device into
390 ! the string array.

400 !

410 DISP "Reading catalog..."
420 CAT Stor.dev$ TO Directory$(*)

430 !
440 ! Address the external controller to listen,
450 ! send the catalog array to the controller.
460 !

470 DISP "Tramsferring data..."
480 COUTPUT Host;Directory${%)
480 !

Example Programs 11-§

500 I Pass control back to the external controller.
510 !

520 PASS CONTROL Host

530 DISP "DONE®

540 EKD

11-10 Example Programs

DOWNLOAD — Download program to analyzer

10

20

30

40

50

60

70

80

80

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
3560
360
370
380
390
400
410
420
430
440
450
460
470

! BASIC program: DOWNLOAD - Download program to Rfna

! program to the 871x. This program is designed to

1
1
1
! This program demonstrates how to download an IBASIC
1
! run on an external controller.

1

I

! Initialize variables for the interface selasct code
! and the HP~IB address of the HP 8711.
!

Scode=T

Address=16

Na=Scodex100+Address

I

I Initialize variables, abort any bus traffic and
! clear the input/output queues of the analyzer.
I

DIM Line$i255]

ABORT Scede

CLEAR HNa

I

! Get the program’s filename and open the file.
]

Get_filename: INPUT "Program to be transferred?”,Filename$

ON ERROR GOTO No_file

DISP "Checking file . . .7

ASSIGN @Basic, prog TO Filename$;FORMAT ON

OFF ERROR

!

! Clear the contents of the analyzer’s program buffer.
!

OUTPUT Na;"PROG:DEL:ALL"

1

! Change the EOL {(end of line) character to line feed
! and initialize the line counter.
1

Transfer: ASSIGN @Prog TC Na;EOL CHR$(10)

Line_count=0

1

! Initiate the program transfer (an indefinite length
! block data transfer).

1

OUTPUT @Prog;"PROG:DEF #0V;
]

Example Programs

11-11

480
430
500
510
520
530
540
550
560
570
580
580
600
610
620
630
640
650
660
870
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870

! Read each program line from the file and send it to
! the HP 8711. Locp until the end of file is reached.

0¥ ERROR GOSUB End_file
LOOP
ENTER @Basic_prog;Line$
OUTPUT @Prog;Line$
Line_count=Line_count+i
DISP “"Lines transferred: ";Line_count
END LOOP

H
! End the data transfer (output a line feed with EOI)
! and close the file. Return the analyzer to LOCAL
! control and stop this program.
i
End_block: OUTPUT @Prog;CHR$(10) END
ASSIGN @Basic_prog TD *
DISP "Transfer complete”
LOCAL Na
STOP
!
t This subroutine is the error handler for opening
b the file - if the file won’t open it returns to
! got a new file name.
E

¥o_file: BEEP
DISP “CAR’'T OPEN: """:Filename$;""" «- #;
GDTC Get_filename
RETURN

1
! This subroutine is the error handler for the
! data transfer. When the end of file is reached
! it generates an error. Execution is resumed
! outside of the transfer loop.
I
End_file: IF ERRN=52 THEN GUTO End_block
DISP ERRM$;" occured during data transfer"
STOP
RETURN
END

1112 Example Programs

PRAWS871X — Drawing setup diagrams

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

i
1
1
1
1
!
i
]
!
!
]

H
I
H

! IBASIC program: DRAWS71X - Drawing setup diagrams

! This program draws the HP 871X network analyzer
! and a device under test to the full screen IBASIC

display partition. The drawing can be scaled to

! fit the application. Setting the scale factor to

1.0 creates a drawing of about 400 pixels wide
(1/2 screen width) and 100 pixels high (1/3 screen

! height).

Setup an I/0 path name for the internal bus and
declare variables.

INTEGER X0,Y0
REAL Scale
ASSIGN @Rfna TO 800

Preset the analyzer and wait until it is done.

OUTPUT €Rfna;"SYST:PRES;*0RC?"
ENTER @Rfna;0pc

Allocate the full screen as an IBASIC display
and clear the graphics buffer.

QUTPUT €Rfna;"DISP:PROG FULL"
QUTPUT €Rfna;"DISP:WIND10:GRAP:CLEAR"

I
H
]
H
I
H
I

Setup the origin and scale parameters for the
drawing. Draw the network analyzer and dut.

X0=100

Y0=100

Scale=l.

CALL Draw_naf{X0,Y0,Scale)
CALL Draw_dut(X0,Y0.Scale)
END

! This subroutine draws the HP 8711 at origin X0,Y0
! and scale Sc. The drawing is done to the IBASIC

Example Programs

11-13

! display (window 10) using the HP 8711’s user

480

490 ! graphics commands.

500 !

510 !

820 ASSIGN eRfna TO 800

B30 OUTPUT @Rfna;"DISP:WIND10O:
)

540 QUTPUT @Rfna;"DISP:WIND1O:
,"EVALS (INT(Sc*100))

£50 QUTPUT €Rfna;"DISP:WIND1O:

ONEVALS (YO+INT(Sc*10))

5860 OQUTPUT @Rfna;''DISP:WIND1Q:
UETALS (INT(Sc*80))
570 OUTPUT @Rfna;''DISP:WIND10:

g, UEVALS(YO+INT(Sc*80))

580 DUTPUT @Rfna;"DISP:WIND1O:
EVALS (INT(S5c#8))

520 DUTPUT @Rfna;"DISP:WIND1O:
&","eVALS{YO+INT (Sc*70))

600 OUTPUT @Rfna;"DISP:WIND10O:
ZVALS (INT(Sc#*8))

610 OUTPUT @Rfna;"DISP:WIND10O:

&","&VAL$ (YO+INT (Sc*60))

620 OUTPUT @Rfna;"DISP:WINDLO:
ZVALS(INT(Sc#8))
630 QUTPUT @Rfna;"DISP:WIND1O:

&","&VALS (YO+INT(Sc*50))

640 OUTPUT @Rfna;"DISP:WIND10:
ZVAL$(INT(Sc*8))

650 OUTPUT @Rfna;"DISP:WIND1O:
&","ZVALS (YO+INT{Sc*40))

660 QUTPUT @Rfna;“DISP:WIND1O:
VAL (INT(Sc*8))

870 QUTPUT @Rfna;"DISP:WIND10:

&","&VALS (YO+INT(Sc*30))

680 QUTPUT @RIna;"DISP:WIND1C:
ZVALS(INT (Sc*8))
€90 JUTPUT @Rfna; DISP:WIKD10O:

&","gVAL$ (YO+INT (Sc*20))

700 QUTPUT @Rfna;"DISP:WIND10:
ZVALS (INT(Sc*8))

710 QUTPUT @Rfna;"DISP:WIND1O:
&","EVAL$(YO+INT(Sc*10))

720 OUTPUT @Rfna;"DISP:WIND10:
ZVALS (INT(Sc*8))

730 CUTPUT @Rfna;"DISP:WIND10:

&', "EVALS (YO+INT (Sc*x80))

740 QUTPUT ©Rfna;"DISP:WIND10:
ZVALS (INT{Sc*13))
750 OUTPUT ©Rfna;''DISP:WIND10:

", "&VAL$(YO+INT(Sc*81))

11-14 Example Programs

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GHAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

GRAP:

MOVE

RECT

MOVE

RECT

MOVE

RECT

MOVE

RECT

MOVE

RECT

MOVE

RECT

MOVE

RECT

MOVE

RECT

MOVE

RECT

MOVE

RECT

MOVE

RECT

MOVE

"EVAL$(X0)&", "EVAL$(YO
"EVALS(INT (Sc*350))&"

"EVALS (XO+INT (Sc#10))&
"gVALS (INT(Sc+180))&",
VEVALS (XO+INT(Sc*200))
"ZVALS (INT(Sc*15))&","
"gEVALS (XO+INT(Sc*200))
VEVAL$ (INT(Sc*18))&","
"EVALS (XO+INT(Sc*200))
"EVAL$ (INT(Sc*15))&","
"EVAL$ (XO+INT(Sc*200))
"EVALS (INT(Sc*15))&","
"EYALS (XO+INT(Scx200))
"EVALS (INT(Sc*15))&","
"gVALS$ (XO+INT(Sc*200))
"EVALS(INT(Sc*15})&","
BEVALS (XO+INT (Scx200))
"EVALS (INT(Sc#15))&","
“EVALS (XO+INT (Sc*200))
“EVALS (INT(Sc*15))&","
YEVALS (XO+TINT(Sc*265))
"EVALS (INT(Scx70))&","

HEVALS (XO+INT(Sc*x230))

GRAP

GRAP

GRAP

GRAP

GRAP
GRAP

GRAP
GRAP

GRAP

:RECT

:MOVE

:RECT

:MOVE

:CIRC
:MOVE

:CIRC
‘MOVE

:CIRC

"EVAL$(INT(Sc*20))&","
"EVALS (XO+INT{Sc*275))
"GVAL$ (INT(Sc#50))&","
"EVALS (XO+INT(Sc*295))

YEVALS (INT(Sc=8))
EVALS (X0+INT(Sc*245))

"EVALS (INT(Scx4))
"GVALS (XO+INT(Sc*325))

"EVALS (INT(Sc#4))

GRAP

(MOVE

This subprogram draws a device under test (dut)
and connects it to the HP 8711 that was drawn
with an origin at X0,Y0 and a scale of Sc.

780 gUTPUT @Rfna;"DISP:WIND10:
EVALS(INT(Sc*x10))

770 OUTPUT @Rfna;"DISP:WINDP10:
&","EVALS (YO+INT{Sc%85))

780 OUTPUT @Rfna;"DISP:WIND1O:
EVALS(INT(Sc#3))

790 OUTPUT @Rfna;"DISP:WIND1O:
&', VEVALS (YO+INT(Scx50))

800 OUTPUT €Rfna;"DISP:WINDIC:
810 OUTPUT @Rfna;"DISP:WINDiC:
&', MEVALS (YO+INT(Sc#15))

820 OUTPUT @Rfna;"DISP:WINDiC:
830 OUTPUT @Rfna;"DISP:WINDIC:
EN L EVALS (YO+TINT (Sc*18))

840 OUTPUT @Rfna;"DISP:WINDiO:
850 SUBEND

860 !

870 SUB Draw.dut(INTEGER XC,INTEGER YQ,REAL Sc)
830 !

890 !

900 !

910 !

920 !

930 !

940 !

950 ASSIGN @Rfna TO 800

960 OUTPUT @Rfna;"DISP:WIND1O:

&","&VAL$ (YO+INT(Sc*1ib))

970

CUTPUT @Rfma;"DISP:WIND1O:

", "EVALS(YO-INT(Sc*20))

280

CUTPUT @Rfna;"DISP:WIND1O:

&","&VAL${YO-INT(Sc*20))

990

CUTPUT @Rfna;"DISP:WIND1O:

", "&VAL$(YO-INT (Sc*22))

1000

CUTPUT @Rfmna;"DISP:WIND1O:

ZVAL$ (INT(Scx4))

1010

CUTPUT @Rfna,;"DISP:WINDIO:

&","EVALS(YO-INT(Sc*20))

1020

CUTPUT @Rfna;"DISP:WINDIO:

&, "&VALS$(YO-INT(Sc*20))

1030

CUTPUT @Rfna;' DISP:WIND1O:

", "&VALS(YO+INT(Sc*15))

1040

SUBEND

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

:DRAW

:DRAW

:MOVE

:RECT

:MOVE

:DRAW

:DRAW

“EVALS (XO+INT(Sc#*245))
“VALS (XO+INT(Sc*245))
Y VAL (XO+INT(Sc#265))
"EVALS (XO+INT(Sc*265))
"gVAL$ (INT(Sc#40))e","
"&VALS (XO+INT(Sc*305))
"EVALS (XO+INT(Sc*328))

"GVALS (XO+INT(Sc*325})

Example Programs 11-15

DUALCTRL — Two controller operation

10 o e e e e e e e e e e e e
20 !
30 ! BASIC program: DUALCTRL - Two controller operation
40
BEC ! This program is designed to run on an external

- 80 ! controller. It demonstrates how the external

1
1
1
1
1
70 ! controller and HP IBASIC can work together. The
}
i
i
I

80 ! program downloads an IBASIC program to the HP 871X
S0 ! and runs it twice. After each rum, two program

100 ! variables are read from the analyzer and displayed.
110 !

120 B o e
130 t

140 ! Initialize the variables for the interface select

150 ' code and the HP-~IB address of the HP 87iX.

160 t

170 Scode=7

180 Address=18

180 Na=Scode*100+Address

200 !

210 ! Prepare the analyzer for remote operation, clear
220 ! the analy=zer’s input/output queues, the display
230 ! and scratch any program in the buffer,

240 !

250 CLEAR Na

260 CLEAR SCREEWN

270 QUTPUT HNa;"PROG:DEL:ALL"

280 !

290 1 Download the program as an indefinite block length
300 ! data transfer, terminate the data traunsfer by
310 ! sending a carriage return and EQOI.

320 !

330 DISP "Downloading the program..."

340 ASSIGN €Prog TO Na

350 QUTPUT @Prog;"PROG:DEF #0";

360 QUTPUT @Prog;"10 COM INTEGER Times_run,Test§[10]"
370 JUTPUT @Prog;:"20 Times_run=Times_run+1"

380 QUTPUT @Prog;"30 IF Times_run=1 THEE Test§=""PASS"HY
390 QUTPUT @Prog;"40 IF Times_run=2 THEN Test$=""FATLVY
400 OQUTPUT €Prog;"50 FOR I= 1 TG 20"

410 DUTPUT @Prog;'60 BEEP"

420 QUTPUT @Prog;"70 WEXT I"

430 OUTPUT @Prog;"'80 END"

440 OUTPUT @Prog;CHR$(10) END

450 !
460 ! Initialize interrupt registers - clear the status byte,
470 ! the service request enable register, the standard event
480 ! enable register, and preset the other status registers.
490 !

11-16 Example Programs

500
510
520
530
540
550
560
570
580
530
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
280
290

1000

OQUTPUT Na;"*CLS"

OUTPUT Na;"*SRE 0"

OUTPUT Ka;"“*ESE O

OUTPUT Na;"STAT:PRES"

H

! Set up the status registers to generate an interrupt
! on negative transition of the Program Running bit
! (bit 14 in the Uperational Status register).

1

QUTPUT WNa;'"STAT:0PER:NTR #HFFFF"

OUTPUT Ka;"STAT:0PER:ENAB 16384"

QUTPUT HNa;''=CLS"

DUTPUT MKa;'"=SRE 128"

i

! Run the program, read and display the variables.
!

DISP "Running the program..."

OUTPUT Na;'"PROG:EXEC ’RUN’M

Display_res{¥a,Scode)

OUTPUT Na;"PROG:EXEC ’RUN’"

Display_res{Na,Scode)

1

! Return the analyzer to front panel control, this
! is the end of the program.

1

LOCAL Na

DISP "DONE !*

END

i
! This subprogram waits for an SR interrupt to

! signal that an IBASIC program running on the

! analyzer has finished. It then reads and clears
! the HP-1B status registers. The values of two

! program variables are then read and displayed.

1

i

! Setup branching to an interrupt handling routine,
! enable the interrupts and wait until one occurs.
i

ON INTR Scode GOTD Read_results
ENABLE INTR Scode;2

Idle: GOTO Idle
Bead_results: !

! The program has finished running - read and clear

Example Programs

11-17

1010 ! the operaticnal status register and status byte.
1020 !

1030 A=SPOLL{Na)

1040 OUTPUT Na;"STAT:OPER:EVEN?"

1050 ENTER Na;Event

1060 OUTPUT Na;"*CLS"

1070 !

1080 ! Read a numeric variable (Times_run) and a string
1090 ! variable (Test$) and display the values.

1100 !

1110 QUTPUT Na;"PROG:NUMB? °’Times_run’"

1120 ENTER Na USING "X,K";Times_run

1130 QUTPUT Na;"PROG:STR? ’Test§’™

1140 ENTER Na USING "X,K";Test$

1150 DISP "Times_run: ";Times_run,"Test$: ";Test$
1160 PRINT "Times_run: ";Times_run,"Test$: ";Test$
1170 SUBEND

11-18 Example Programs

REPORT — Using the parallef port

10
20
30
40
50
60
70
80
20
100
110
120
130
140
150
160
170
186
180
200
210
$[s0]
220
230
240
2b0
260
270
280
290
300
310
320
330
340
380
360
370
380
380
400
410
420
430
440
450
460
470
480

! IBASIC program: REPORT ~ Using the parallel port

i

i

i

! This program uses the 871X to generate a report,
! making a hardcopy on a printer connected to the
! parallel port. It uses a subprogram to send the
! output to the parallel port ons line at a time.
I
i
I
I
I
I
I

! Thie example uses five different font types that

! may or may not be supported for your printer.

! These character fonts are available for HP LaserJet
! printers. Refer to your printer manual to modify

! the example fonts for your printer.

H
B s s e s e o B S O . B s ik e e o o P
H

|

! Assign an I/D path name for the internal bus and
! declare and initialize variables.
L}

COM /Cset/Block$[50],Tit1le$50],51ant$[50] ,Banner$ [50] ,Medium

ASSIGN @Rfna TO 800
Esc$=CHR$ (27)

i
! Preset the analyzer, put it in Trigger HOLD mode,
! allocate the full IBASIC display and clear the

! screen.

1

OUTPUT Q@Rina;"SYST:PRES;*WAI"

OUTPUT @Rina;"ABOR;:INIT:CONT QFF;*WAI"

OUTPUT @Rfna;"DISP:PROG FULL"

CLEAR SCREEHN

1

! Define the escape sequence for sach font that is

! used. Refer to your printer manual.

1
Block$=Esc$&"&100"&Esc$&" (8U"&Esc$&’ (s1p10h12v0sObOT"
Title$=Esc$&"&100"Esc$&" (8U"&Esc$" (s1p8h12v0sObOT™
Slant$=Esc$&"&100"&Esc$&" (7J"&Esc$L" (s0p6h14visObOT"
Banner$=Esc$&"&100"¢Esc$&" (7I"&Esc$&" (s0p4h24v0s0bOT"
Medium$=Esc$&"&100"Esc$&" (7I"&Esc$&" (s0p8h14v0s0bOTY
1

! Select the font to use writing the company name

! and address, send the company name and address.

1

CALL Send_line(Title$,1)

CALL Send_line("COMPANY NAME",1)

CALL Send_line("CITY, STATE, COUNTRY",1)

Example Programs

11-19

490 CALL Send_line(" ",1)
BOC !t
510 ! Select the font to use writing the device name,
520 ! send the device name.
B3¢ !
540 CALL Send_line(Banner$,1)
550 CALL Send_line(" _",0)
560 CALL Send_linme(" _",1)
570 CALL Send_line(" ",1)
580 CALL Send_line(" ",1) :
580 CALL Send_line(" BPF-175 Bandpass Filter",1i)
600 CALL Send_line(" ",1)
610 CALL Send_line(" ",1)
620 CALL Send_line(" _",0)
630 CALL Send.line(" _",1)
640 CALL Send_line(" ",1)
650 !
660 ! Select the font to use writing the device
670 ! specifications, send the information.
€680 !
690 CALL Send_line(Slant$.1)
700 CALL Send_line(" ",1)
. 710 CALL Send_line("PASS BAND (MHZ) 3 dB
60 +/- B",1)
720 CALL Send_line(" ",1)
730 CALL Send_line(" 20 dB
90 +/- 5",1)
740 CALL Send_line(" ",1)
750 CALL Send_line(" 40 dB
120 +/- 5",1)
760 CALL Send_line(" ",1)
770 CALL Send._line("SWR PASSBAND (typical) 1.8:17,1)
780 CALL Send_line(" ",1)
790 CALL Send line("SWR STOPBAND (typical) 1.8:1%,1)
800 CALL Send_line(" “,1)
810 CALL Send_line("Cost per unit: 36.95",1)
§20 !
830 ! Select the font to use for the performance data
840 ! title, send the title.
850 !
860 CALL Send_line(Block$,1)
870 CALL Send_line(" ",0)
880 CALL Send_line(" Transmission Characterist
ies®™, 1)
890 !
200 ! Return the display to the analyzer.
910 i
920 QUTPUT @Rfna;"DISP:PROG CFFM
230 !
9240 ! Setup the device measurement. This example
950 ! measures the transmission response of a

11-20 Example Programs

960
970
280
980
1000

1010

! bandpass filter at 175 MHz.

I

QUTPUT @Rfna;"DISP:ANN:FREQ1:MODE SSTOP"

OUTPUT @Rfna;"SENSi:FREQ:STAR 10 MHz;STGP 400 MHz;+*WAI"
QUTPUT @Rfna;"DISP:WIND1:TRAC:Y:PDIV 20 dB;RLEV -50 dB;RPOS 5

QUTPUT @Rfna;"DISP:ANN:TITL ON;TITL1:DATA ’HP 8711 RF NETWORK

ANALYZER

1020
1030
1040
1050
1060
1070
1080
1080
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1360
1360
1370
1380
1380
1400
1410
1420
1430
1440

! Take a measurement sweep and wait for it to
! complete. Perform a -3 dB bandwidth search.
]

OUTPUT @Rfna;"INIT1;*DPC?"

ENTER @Rfna;0Opc

QUTPUT @Rfna;"CALCI:MARK1 ON;MARK:BWID -3"

I

! Select the parallel port and the printer’s
! contrel language as the hardcopy device.

! Set the printer resclution and margins -

! turn off automatic form feed.

i

QUTPUT @Rfna;"HCOP:DEV:LANG PCL;PORT CENT"
OUTPUT @Rfna;"HCOP:DEV:RES 300"

OUTPUT @Rfna;"HCOP:PAGE:MARG:LEFT 40"

OUTPUT @Rfna;"HCOP:PAGE:WIDT 110"

QUTPUT @Rfna;"HCOP:ITEM1:FFE:STAT OFF"

1

! Send the measurement data {graph and marker
! values) to the printer.

!

OUTPUT @Rfna;"HCOP"

!

! Select the fonts and send the "footer"

! information for the report.

!

CALL Send line(Banner$,1)

CALL Send_line(" ",1)

CALL Send_line(" ",1)

CALL Send_line("IN STOCK IMMEDIATE DELIVERY!',1)
CALL Send_line(Medium$,1)

CALL Send_iine(" "o0)

CALL Send_line("For more information: Call 1-800-Filter",1)
t

! Send a form feed te the printer.

I

WRITEIO 15,0;12

END

Example Programs

11-21

1450 ! The subprogram sends a string to the parallel port
1460 ! (I/0 port 15). The Crlf flag determines whether
1470 ! a carriage return (ASCII 13) and line feed (ASCII
1480 ! 10) are needed at the end of the string.

1490 !

1600 § o o o
1510 INTEGER Length

1520 Length=LEN(String$)

1830 FOR I=1 70 Length

1540 WRITEIO 15,0;NUM(String$lI;1])

1850 NEXT I

1560 IF Crlf=1 THEYW

1570 WRITEID 15,0;10
’ 1580 WRITEID 15,0;13
1590 END IF
1600 SUBEND

11-22 Example Programs

TRICTRL — External controller with local IBASIC controllers

16

20

3¢

40

50

60

70

80

20

100
110
120
130
140
150
180
170
180
180
200
210
220
230
240
250
2680
270
280
290
300
31C
320
330
340
380
360
370
380
380
400
410
420
430
440
450
460
470
480
490

BASIC program: TRICTRL - Three controller operation
One controller, Two IBASIC instruments

This program is designed to run on an external
controller. It demonstrates how the external
controller and multiple instruments running IBASIC
programs can be synchronized to work together.

Run this program on an external contreller. Two HP871x
are needed. Set one HP871ix to address 16. Set the
other to address 18. Connect HP-IB cables between

the controller and the twe analyzers.

The program downloads IBASIC programs to two HP 87iXs,
then runs each program. Pressing softkey i on either
instrument triggers a sweep. Pressing softkey 3 on
either instrument will trigger am SR(. The controller
will poll the instrument over the HP-IB bus, determine
which instrument has requested service, log the SR(Q,
and release the instrument for more measurements by
setting the IBASIC variable Ctrl_flag.

S bW SMI MM M G des dem mem tem T e ot v S et e r e e b

Initialize the variables for the interface select
code and the HP-IB address of the HP 87iX.

Scoda=T

Addressl1=16
Address?l=18
¥al=Scodex100+Addrass]
NaZ2=Scode*100+Address?
Dev_count1=0
Dev_count2=0

1
! Prepare the analyzer for remcte operation, clear
! the analyzer’s input/output queues and scratch

! any program in the buffer,

1

ABORT 7

CLEAR HNail

CLEAR Na2

CLEAR SCREEN

1

OUTPUT Nal;"SYST:PRES;*0PC?"
ENTER Nal;Opc

CUTPUT Na2;"SYST:PRES;%0pPC?"
ENTER NaZ2;0pc

! Preset analyzer #1

! Preset analyzer #2

Example Pragrams

11-23

500 !

‘510 ODUTPUT Nail;"PROG:STAT STOP® ! Stop all programs
520 REMOTE Nail
530 OUTPUT Nal;"PRDG:DEL:ALL" ! Scratch the programs

540 OUTPUT Na2;"PROG:STAT STOP®
560 REMOTE Na2
560 OUTPUT Na2;"PROG:DEL:ALL"

570 !
580 ! Initialize interrupt registers - clear the status byte,
580 ! the service request enable register, the standard event
600 ! enable register, and preset the other status registers.
810 !

620 OUTPUT HWat;"*CLS"

630 OUTPUT Nai;"*«SRE O"

640 OUTPUT NWat;"*ESE O"

650 OUTPUT Nail;"STAT:PRES;*0PC?"
660 ENTER Nai;0lpc

870 !

680 (UTPUT Na2;"*CLS3"

620 QUTPUT Na2;"*SRE O

700 QUTPUT Wa2;"*ESE Q"

710 QUTPUT NaZ2;"STAT:PRES;*0PC?"
720 ENTER Na2;0pc

730 !

740 ON INTR 7,2 GOSUB User_srq ! Define the SR service ro
utine

750 GOSUB Usermask ' ! Enable the user SR{

760 ENABLE INTR 7;2

770

780 Download the program asg an indefinite block length

800 sending a carriage return and EOI.
810 !

820 DISP "Downloading the programs..."
830 ASSIGN @Prog TO Nail

840 GOSUB Dnld

850 ASSIGN @Prog TO NaZ2

860 GOSUB Dald

870 !

880 ! Run the programs

890 DISP "Running the programs..."

900 GUTPUT Nal;"PROG:STAT RUN;=0OPC?"
910 ENTER Nal;0Opc

920 !

930 OUTPUT Na2;"PROG:STAT RUE;=0PC?"
940 ENTER NaZ;0pc

]
£
790 ! data transfer, terminate the data transfer by
]
t

950 !

960 ~ BEEP

970 DISP "Waiting for srg..."
980 !

990 LOCAL Nal

11-24 Example Programs

1000
1010
1020
1030

1050
1060
1070
1080
1080
1100
1110
1120

1130 User.srq:

1140
1180
1160
1170
1180
1180
1200
lag

1210
1220
1230
1240
1250
1260
1270
1280
1280
13060

flag

1310
1320
1330
1340
i350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480

LOCAL Na2
Idle:GOTC Idle

S5TOP

! Enable SR{s to occur when the user_srq bit is set
1040 Usermask:
QUTPUT Nal;"+ESE 64;%SRE 32"
QUTPUT Xal;"=0PCT"

ENTER Nal;0pc
QUTPUT Ka2;"+ESE 64;+SRE 32"
QUTPUT Ha2;"*0pC?"

ENTER Ka2;0pc

RETURN
I

Stb=SPOLL(Nal)
IF (BINAWD{(Stb,64)0) THEN
QUTPUT Nal;'x*ESR?"
ENTER Nail;Stat
Dev_countl=Dev_counti+i
PRINT "Inst:",Nai,"Dev:",Dev_counti
OUTPUT Nal;"PROG:NUMB *Ctlr_flag’,0" ! Clear the IBASIC f

LGCAL Kati

ELSE

Stb=SPOLL(Na2)
IF (BINAND(Stb,64)0) THEN

JUTPUT Na2;''xESR?Y

ENTER NaZ2Z;Stat

Dev_count2=Dev_count2+1

PRINT "Inst:",Na2,"Dev:",Dev_count?

OUTPUT Na2;"PROG:NUMB ’Ctlr.flag’,0" ! Clear the IBASIC

LOCAL NaZ2
END IF

END IF

]

ENABLE
RETURN

]

Dnld: !
QuTPyUT
guTPuT
oUTPUT
OUTRPUT
DUTPUT
DUTPUT
QUTPUT
QUTPUT
QuUTPUT
OUTPUT

INTR 7

! This routine is called to service,SRQs

! Pell the first instrument

! Poll the second instrument

Dovmload example program to analyzer
@Prog; "PROG:DEF #0";

@Prog;"10
@Prog;''20
@Prog;"30
@Prog;"'40
@Prog;"560
@Prog;"'60
@Prog;"70
@Prog;"80
@Prog;"90

COM INTEGER Ctlr_£flag"

OUTPUT 800;""ABOR; :INIT1:CONT OFF"""

ON KEY 1 LABEL ""Test 1"" GOSUB Do_test"

ON KEY 3 LABEL ""Done Test"" GOSUB Send_srg®
Idle:GOTO Idle"

STOP"

Send_srq: ¥

BEEP"

Ctlr_flag=1"

Example Programs

11-25

1480
1500
1510
1620
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620

1630 !

OUTPUT @Prog;"100
OUTPUT €Prog;"110
OUTPUT @Prog;"120
UTPUT @Prog;"130
QUTPUT @Prog;"140
QUTPUT @Prog;"1b0
QUTPUT @Prog;"160
QUTPUT €Preog;"i70
QUTPUT @Prog;"i80

QUTPUT 800;""5YST . KEY :USER""Y

DISP ""Haiting for CTLR..."""

Stall: IF Ctlr_flag=1i THEN GOTO Stall"
DISP i nnn

RETURN"

DO_TEST: QUTPUT 80O0;""INITi,*0pCT"""
ENTER 800;0pc"

RETURN"

Exp

OUTPUT @Prog;CHR$(10) EXD
OUTPUT @Prog;"*opc?"”

EXTER @Prog;Upc
RETURN
END

11-26 Example Programs

UPLOAD — Upload program from analyzer

10

20

30

40

B0

80

70

80

90

100
110
120
130
140
150
180
170
180
190
200
210
220
230
240
250
260
270
280
280
300
310
320
330
340
350
360
370
380
380
400
410
420
430
440
450
460
470
480
490

BASIC program: UPLOAD - Upload program from HP 871X

This program uploads the current IBASIC program
in the HP 871X’s program buffer to an ASCII file
on the controller’s current mass storage device.

Assign an I/0 path name to the HP 8711, initialize
the variables, and clear the analyzer’s input/output
gqueuss.

ASSIGE @Rfna TO 718

DIM Prog_line$[256]

CLEAR @Rfna

i

! Enter the name of the file to be created.
i

INPUT "ENTER NAME OF FILE TO UPLOAD PROGRAM TO ",Filename$
PRINT Filename$

1

! Query the HP 8711 for the contents of its
! program buffer.

E

OUTPUT @Rfna;"PROG:DEF?"

t

! Read the block header, the number of digits in
! the file size, and the file size.

E

ENTER @Rfna USING "#,4,D";Prog_line$, Ndigits
ENTER @Rfna USING "#,"&VAL$(Ndigits)&"D";Nbytes
!

! Create the target ASCII file on the current mass
! storage device and assign it an I/0 path name.
J

Openfile(@File,Filename$,Nbytes)

ASSIGN @File TO Filename$;FORMAT ON

i
! Read the program one line at a time, and write
! it to the new file. Print each line on the

! display as it is read.

i

LOogP
ENTER @Rfna;Prog_line$
EXIT IF LEN(Prog.line$)=0
PRINT Prog._line$
QUTPUT @File;Prog_line$

Example Programs

11.27

500 END LOOP

510 !

520 ! Close the new file.

530 !

540 ASSIGN @File TO =*

550 END

BBO oo e o e e e i 2
B57¢ SUB Openfile(@File,Filename$,Fsize)

BB oo o o o st
59¢ !

600 ! This subprogram creates an ASCII fils with the

610 ! name ’Filename$’ of the specified size 'Fsize’.

620 ! Error trapping is used to detect any errors in

630 ! opening the file. If the contreller is HP IBASIC
640 ! for Windows a DOS file is created, otherwise the
650 ! LIF format is used.

660 !

670 ormerreeec e e e
680 CN ERROR GOTO Openerr

690 IF SYSTEM$("SYSTEM ID")="IBASIC/WINDOWS" THEN

700 CREATE Filename$,1

710 ELSE

720 IF Fsize MOD 256>0 THEN Fsize=Fsize+2b6

730 CREATE ASCII Filename$,Fsize DIV 258

740 END IF

760 i

760 Openerr:IF ERRN54 THEN PRINT ERRM$

770 SUBEND

11-28 Example Programs

USERBEG — Set up user-defined

softkeys

10 'Filename: USERBEGIN

20 !

70 !

80 ! Description: Program to set up the User Begin softkeys.
90 ! .

100 ! A) This program creates User Begin softkeys which allow
110 ! the user to: ©Save or Recall one of twe instrument
- 120 ! states, set the marker to maximum, set the scale/div,
130 ! and compute some measurement statistics at the marker.
140 !

150 ! B) In order to run this program, do the following -

60 ! 1) Load this program into the 871x

170 ! 2) Press the "BEGIN" (hardkey) and the "User Begin
on/OFF" (softkey).

180 ! 3) The "User Begin'" function is now enabled (which runs
this

190 ! program). This program re-defines the softkeys
displayed

200 J whenever the BEGIN hardkey is pressed. The functions
210 ! performed by these softkeys are defined by this

220 !} program. HNote that all front pansl keys in the
analyzer are

230 ¢ active (as if there were no program running).

240 ! 4) Use the instrument as you normally would. However,
when)

250 ! the BEGIN hardkey is pressed, the menu defined

260 ! by this program will be displayed instead of the usual
270 ! BEGIF softkeys, until the "User Begin ON/off" (softkey
)

280 ! is pressed, turning off the "User Begin" mode.

290 !

300 Dsokskseskokoksiok ok kool dolokor s ook skl ook ook ol sk ok o ks ook ok o ok ok o ok o ok ok ok ok ok
310 ! Initialize

320 1

330 User_ begin:ASSIGN @Hp871ix TU 800 'REQUIRED - first line for
User Begin program

340
350
360
370
380
390
400
s

410
420
8

430
440

REAL Vert_scale,Mrkr_data(1:30),Mrkr_mean,Mrkr_sdev
REAL Mrkr max,Mrkr_min,I
DIM Message$[124]

!
OUTPUT @Hp871x;"DISP:MENUZ:KEYS * 7 ;*WAI" Iclear all label

QUTPUT @Hp871ix;"DISP:MENUZ:KEY1 ° Save State 17 ;®WAIY
QUTPUT @Hp871x,;"DISP:MENUZ:KEYZ2 ° Recall State 1’ ;*WAIY

Exampie Programs

11-29

450 OUTPUT @Hp8T71ix;"DISP:MENUZ:KEY3 ° Save State 27 ;*WAIY
460 QUTPUT @Hp8T71x;"DISP:MENUZ:KEY4 Recall State 27 ;*WAIY
470 OUTPUT @Hp871x;"DISP:MENU2:KEY5 ’Mkr =-> Max’;*WAI"
480 OUTPUT @Hp871x;"DISP:MENU2:KEY6 ’Scale/Div?;*WAIM

490 OUTPUT @Hp871x;"DISP:MENUZ:KEY7 °’ MarkerStatistics? ;%WAI"
50O !

510 User._pause:PAUSE !pause the program untill a softkey is press
ed

B20 GOTO User.pause lreturn to program pause after a softkey p
ress

530 !

540 o e e e e e 3 o
BBO ! Define softkey routines

560 !

BE70 User_keyl: ! Define softkey 1: save state 1

580 OUTPUT @HpB71ix;"MMEM:STOR:STAT 1,°MEM:UBEGN1.STA’" !save sta
te 1

590 GOTC User_pause 'return to softkey loop
600 !
610 User_key2: ! Define softkey 2: recall state 1

620 OUTPUT @HEp8Tix;"MMEM:LOAD:STAT 1,’MEM:UBEGNL.STA’" I!recall s
tate 1

630 GOTO User_pause !return to softkey loop

640 !

65C User_key3: ! Define softkey 3: save state 2

660 OUTPUT @Hp8T71x;"MMEM:STOR:STAT 1,’MEM:UBEGK2.3TA’" !save sta
te 2

870 GOTO User_pause freturn to softkey loop

680 !

690 User_key4: ! Define softkey 4: recall state 2

700 OUTPUT @Hp871x;"MMEM:LOAD:STAT 1, ' MEM:UBEGNZ.8TA’" lrecall
state 2

710 GOTO User_pause lreturn to softkey loop

720 !

730 User_ key5: ! Define softkey 5: set marker to max

740 OUTPUT @Hp87ix;"CALC1:MARK:FUNC MAX" Imarker -> max
780 GOTO User.pause

760 ! ‘

770 User key6: ! Define softkey 6: adjust the scale, dB/Div,

of the trace

780 INPUT "Enter the scale {(dB/Div)",Vert_scale 'ask user for =zc
ale

790 OUTPUT @Hp&71x;"DISP:WIND1:TRAC:Y:PDIV "&VAL$(Vert_scale) !s
et the scale

80C GOTO User_pause

81c !

820 User_key7: ! Define softkey 7: compute statistics for mar
ker.

830 OUTPUT @Hp8T1x;"DISP:ANN:MESS:DATA ’Computing marker statisti
CS.».HI

840 OUTPUT @Hp871x;"CALC1:MARK1 ONY tensure marker is on

11-30 Example Programs

850 FOR I=1 TO 30 'read marker 30 times

860 OUTPUT @Hp8T71x;"CALC1:MARK1:Y?® !get marker reading
870 ENTER @Hp871x;Mrkr_data(l)

880 NEXT I

890 Mrkr_mean=SUM(Mrkr_data)/30 {compute mean

200 !

910 Mrkr_sdev=0 !initialize standard d
eviation

920 Mrkr_min=Mrkr_data(i) tinitialize min

93¢ Mrkr_max=WMrkr_data(i) 'initialze max

940 FOR I=1 TO 30 !compute std dev, min,
max

950 Mrkr_sdev=Mrkr_sdev+(Mrkr_data(I)-NMrkr.mean)"2 !sum square
8 of deviation

960 Mrkr min=MIN(Mrkr_min,Mrkr_data(I})) Ifind min
970 Mrkr max=MAX (Mrkr_max,Mrkr_data(I)) 1find max
880 NEXT I

990 Mrkr_sdev=SQRT (Mrkr_sdev/29) tfinish computation of
gtd dev

1000 ¢

1010 Message$="Marker Statistics:"&CHR$(10) !ist line

of message

1020 Message$=Message$&" Mean ="ZVAL$(Mrkr_mean)&CHR$(10) !2nd
line of message

1030 Message$=Message$&" Min ="&VAL$ (Mrkr_min)&CHR$(10) !3rd
line of message

1040 Message$=Message$&" Max ="&VAL$(Mrkr_max)&CHR$(10) !'4th
line of message

1050 Message$=Message$&" Standard Deviation = "&VAL$(Mrkr_sdev)
!6th line of message

1060 CGUTPUT @Hp871x;"DISP:ANN:MESS:DATA ’"&Message$&”’, MEDIUM"
'display message

1070 GOTO User_pause !return to softkey loop
1080 !

1090 END

Example Programs 11-31

USERBEG1 — The default

10
20
30
40
50
am
60
70
80
280

!
!
!
!

BASIC program: USRBEG1

100 User_begin:ASSIGN @Rfna TO 800

110
120
130
140
150
160
170
180
180
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
380
360
370
380
380
400
410
420
430
440
450
460
470

480 User key4:

!
!
!
!
!

To Medify:
Use [IBASIC][EDIT] or [IBASIC][Key Record]

program

This is the default User Defined BEGIN program. This progr

will automatically install if the [User BEGIN] key is
selected, and a progam has not been previously loaded.

The following line is required. DI NOT REMOVE!

t [User Begin] Program

Delclare storage for variables.

DIM Name$[60],Stri$[60],5tr2$160],5tr3$[60]

! Clear the softkey labels
QUTPUT @Rfna;"DISP:MENU2:KEYS 7 *WAI"

! Re-define softkey labels here.

GUTPUT
OUTPUT
OQUTPUT
DUTPUT
QUTPUT
QUTPUT

QUTPUT
1

@Rfna;"DISP:
@Rfna;"DISP:
@Rfna;'"DISP:
@Rfna;"DISP:
@Rfna;"DISP:
@Rfna;"DISP:
@Rfna;"DISP:

MERUZ:
MENUZ:
MENUZ:
MENU2:
MENUZ:
MENU2:
MENUZ:

EEY1
KEY2
KEY3
KEY4
KEYb
KEYS
KEY7

Ty ? ;*W‘AIII

T ? ;*WAIII

My ~> Max?;*WAIL"
’Title and Clock’;*WAI"
T ? ;*Wﬁzll

TH o WATY

TH7 WAL

!The following 2 lines are required. DO NOT REMOVE!
User _pause:PAUSE
G0T0 User_pause

User_keytl:

! Define softkey 1 here.

GUSUB Message ! Remove this line.
GUTO User.pause

User_key2:

! Define softkey 2 here.

GOSUB Message ! Remove this line
GOTO User_pause

User_key3:

QUTPUT @Rfna;"CALC1:MARK1 ON"
DUTPUT @Rfna;"CALCI:MARK:FUNC MAXY
GOTO User_pause

11-32 Example Programs

! Example Marker Function

! Example Title Entry

480
500
510
520
530
540
550
560
570
580
E90
600
610
620
630
640
650
660
670
680
890
700

INPUT "Eater Title Line 1. Press [Enter] when done.",Name$
OUTPUT @Rfna;"DISP:ANN:TITL1:DATA ’"gName$&' "
OUTPUT @Rfna;"DISP:ANN:TITL CN¢
GOTO User_pause
i
User_key5: ! Define softkey 5 hers.
GOSUB Message ! Remove this line.
GOT0 User.pause
i
User_key6: ! Define softkey 6 here.
GOSUB Message ! Remove this line.
GOTO User.pause
1
User_key7: ! Define softkey 7 here.
GOSUB Message ! Remove this line.
GOTO User_pause
3

Message: !
Stri1$="This key is programmable."
Str2$="To modify, select"
Str3$="[System Optionsl, [IBASICI, [Edit].”
OUTPUT @Rfna;"DISP:ANN:MESS ’"&Stri$&CHR$(10)&Str2$&CHRS(

10)&Str3$&"’, MEDIUNM"

710
720
730

RETURN
1

END

Example Programs 11-33

USERBEG2 — Fast recall of instrument states

10 b o e
20 !

30 ! BASIC program: USRBEG2

40 !

50 ! This is an example User Defined BEGIN program. This progra
m

60 ! will recall the named file. Demonstrates fast recall

70 ! of a previously defined files SETUP1, SETUP2, and SETUP3.
80 !

20 ! The following line is required. DO NOT REMOVE!

100 User.begin:ASSIGN @Rfna TO 800 ![User Begin] Program

110 !

120 ! To Modify:

130 ! Use [IBASIC][EDIT] or [IBASICI[Key Record]

140 !

150 !

160 ! Delclare storage for variables.

170 DIM Name$[60],Str1$[60],5tr2$[60],5tr3¢[60]

180 !

130 ! Clear the softkey labels

200 QUTPUT @Rfna;"DISP:MENU2:KEY8 *?;*WAI"

210 !

220 ! Re~define softkey labels here.

230 QUTPUT @Rfna;"DISP:MENU2:KEY1 ’Setupl’;*WAI"
240 OQUTPUT @Rfna;"DISP:MERU2:KEY2 ’Setup2’;*HAI"
250 OQUTPUT @Rfna;"DISP:MENUZ:KEY3 ’Setup3?;*WAI"
260 QUTPUT @Rfna;"DISP:MERU2:KEY4 ’#7 ;xW{AI"

270 DUTPUT @Rfna;"DISP:MENU2:KEYS %’ ;*WAI"

280 OQUTPUT @Rfna;"DISP:MENU2:KEY6 *x?;xWAI"

290 QUTPUT @Rfna;"DISP:MERU2:KEVT *x’;xWAI"

300 !

310 !The following 2 lines are required. DC NGT REMOVE!
320 User_pause:PAUSE

330 GOTD User_pause

340 !

350 User_keyl: ! Define softkey i here.

360 QUTPUT @Rfna;"MMEM:LOAD:STAT 1,’MEM:SETUP1'"
370 GOTO User_pause

380 !

380 User_key2: ! Define softkey 2 here.

400 QUTPUT @Rfna;"MMEM:LOAD:STAT 1,’MEM:SETUP2?"
410 GOTO User_pause

420 !

430 User_key3: ! Example Marker Function

440 QUTPUT @Rfna;"MMEM:LOAD:STAT 1,’MEM:SETUP3'"
450 GOTO User_pause

460 !

470 User_key4: ! Example Title Entry

480 GOTO User_.pause

11-34 Example Programs

490
500
510
520
530
540
550
560
BTO
580
580

User_keyb: ! Define softkey 5 here.

GCTC User.pause
|

User_key6: ! Define softkey 6 here.

GUTO User_pause
I

User_key?: ! Define softkey 7 here.

GOTO User _pause
!

END

Example Programs 11-35

USER_BIT — Using the USER bit

10 o o e e
20 !

30 ! IBASIC program: USER_BIT - Using the USER bit

40 !

50 ! This program reads and writes to the USER bit.

80 ! IBASIC’s graphics commands are used to draw the

70 ! USER bit value to the display.

80 !

2C § i st 0
106 !

110 ! Assign an I/0 path name to the internal bus and

120 ! initialize variables.

130 !

140 ASSIGN @Rfna TO 800

150 INTEGER Beeper,Count

160 Count=0

170 Beeper=0

i80 ! '

190 ! Preset the analyzer, setup measurement and display

200 ! parameters for a measurement and put the analyzer

210 ! in Trigger HOLD mode.

220 !

230 DUTPUT @QRfna;"SYST:PRES;*WAIL"

240 QUTPUT @Rfna;"DISP:AKN:FREQ1:MODE SSTOP"

250 OQUTPUT @Rfna;"SENS1:FREQ:STAR 100 MHz;STOP 400 MHz;*WAI"
260 OUTPUT @Rfna;"DISP:WIND1:TRAC:Y:PDIV 20 dB;RLEV -60 dB;RPOS 5
3]

270 OUTPUT @Rfna;"SENS1:SWE:POIN 101;TIME .1 s;*WAI"

280 OUTPUT @Rfna;"ABOR;:INIT1:CONT CFF;#WAI"

280 !

300 ! Wait for all the setup operations to be complete
310 ! before continuing the program.

320 !

330 OUTPUT @Rfna;"*0PC?"
340 ENTER @Rfna;0pc

350 !

360 ! Allocate the lower display partition.

370 !

380 OQUTPUT @Rfna;"DISP:PROG LOW"

396 !

400 ! Setup a softkey menu to enable and disable the
410 ! beeper. Clear the analyzer’s input/ocutput queues.
420 !

430 ON KEY 1 LABEL "Beep Enable" GOSUB Beep_on

440 ON KEY 2 LABEL "Beep Disable" GOSUB Beep_off
450 CLEAR @Rfna

460 !

470 t Trigger 100 sweeps. Beep (if the beeper flag is set)
480 ! and toggle the USER bit after each sweep.

11-36 Example Programs

490
500
510
520
530
540
65560
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950

DISP "USER bit example program. End of sweep toggles USER bit

PRINT 'Draw the end of sweep USER bit value..."
MOVE 0,50
FOR I=f TO 100
OUTPUT @Rfna;"INIT1;*0PC?"
ENTER @Rfna;Upc
GOSUB Toggle
NEXT I
DISP "End program"
STOP

I
! The 0dd flag’s value alternates between 1 and 0
! depending on the number of sweeps that have been
! taken. It is the value that is written to the

! USER bit.

1

Toggle: !

IF 0dd=0 THER
WRITEIO 15,1;0
Odd=1

ELSE
WRITEIO 15,11
0dd=0

EWD IF

IF Beeper=1 THEN
BEEP

END IF

!

! Read the value of the USER bit and draw it to the

! IBASIC display.

I

Val=READICO(15,1)

Val=Val*30

DRAW 8%(I-1},Val+50

DRAW 8%I,Val+BO

RETURN

4

! These two subroutines set a flag that is used

! to turn on or off the beeper.
£

Beep_on: Beeper=1

RETURN

Beep._.off: Beeper=0

RETURN
END

Example Pragrams

1137

USERKEYS — Customized softkeys

10 o e o 0
20 !

30 ! IBASIC program: USERKEYS - Customized softkeys

40

50 ! This program provides an example template for use

i
1
1
i
60 ! in customizing the HP 871X’s softkeys. The example
i
i
i
i
i

70 ! demonstrates how to set up six instrument states,

80 ! steore them to the analyzer’s internal memory, and

20 ! setup two interactive softkey menus to choose

100 ! between them.

110 !

120 d o e L 2 e e
130

140 Assign an I/0 path name to the internal bus, preset
150 the analyzer, wait until the preset is complets,

170 and reference values.

180

190 ASSIGE @Rfna TD 800

200 QUTPUT @Rfna;"SYST:PRES;*0PC?"

210 ENTER @Rfna;0Opc

220 OUTPUT @Rfna;"ABOR;:INIT1:CONT OFF;%WAI"

230 OUTPUT @Rfna;"DISP:WINDI:TRAC:Y:PDIV 20 dB;RLEV -60 dB;RPOS 5

H

i
i
!
160 ! turn on Trigger BEOLD mode and set the display scale
i
H

240 !

260 ! Setup six instrument states and store them to the
260 ! internal memory.

270 !

280 GOSUB Save_1

280 GOSUB Save_2

300 GOSUB Save_3

310 GOSUB Save_4

320 GOSUB Save b

330 GOSUB Save_§

340 !

360 ! Setup the Main Menu keys.
360 !

370 GOSUB Menu.1l

380 !

320 ! Wait until a softkey is pressed.
400 !}

410 Suspend: !

420 WAIT 100000

430 GOTO Suspend

440 STOP
450 !
460 ! This subroutine sets up the softkey menus -

i
470 ! Menul sets up the main menu, Menu2 sets up
480 ! the second level menu.

11-38 Example Programs

490

500 Menu_1: BEEP

510
B20
530
540
bb0
560
570
580

DISP "MAIN MENU'

0N KEY 1 LABEL "Setup #1" GO3UB Leoad.l

0N KEY 2 LABEL "Setup #2" GOSUB Load.2

ON KEY 3 LABEL "Setup #3" GOSUB Load_.3

0N KEY 5 LABEL "Autoscale'" GOSUB Autoscale
ON KEY 6 LABEL " Next Menu" GOSUB Menu_2
RETURN

590 Menu_2: BEEP

600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
780
760
770
780
790
800
810
82¢C
830
840
850
860
870
880
890
200
9210
920
930
840
9b0
960
870
980
980

DISP "MORE MENU"

ON KEY 1 LABEL "“"Setup #4" GOSUB Load_4

ON KEY 2 LABEL "Setup #5" GUSUB Load_ 5

ON KEY 3 LABEL "Setup #6" GOSUB Lead.6

ON KEY & LABEL "Autoscale" GUOSUB Autoscale

ON KEY 6 LABEL "Prior Menu" GOSUB Menu_1

RETURE

I

! This subroutine automatically sets the scale and

! referance values of the display.
1

Autoscale: OUTPUT @Rfna;"DISP:WIND1:TRAC:Y:AUTO DNCEY

DUTPUT @Rfna;"DISP:WIND2:TRAC:Y:AUTC ONCE"

RETURN

1

! These six subroutines sach set up the analyzer to
! make a different measurement and store that setup
! to the instrument’s internal memory.

1

Save_1: OQUTPUT @Rfna;"SENS1:STAT ON;*WAI"

OUTPUT @QRfna;"DISP:ANN:FREQ1:MODE SSTOP"

OUTPUT QRfna;"SENS1:FREQ:STAR 100 MH=z;STOP 400 MHz;*WAI"
OUTPUT @Rfna;"INITI1;*WAI"

GUTPUT @Rfna;"MMEM:STOR:STAT 1,’MEM:STATEL.STA"

RETURN
!

Save 2: QUTPUT @Rfna;"SENS2:8TAT ON;+WAI"

OUTPUT @QRfna;"SENS2:FUNC ’XFR:POW:RAT 1,0’ ;DET NBAN;*WAL"
OUTPUT @Rfna;"DISP:ANN:FREQ2:MODE CSPAN

OUTPUT @Rfna;"SERS2:FREQ:CENT 200 MH=z;SPAN 300 MHz;+*WAI"
OUTPUT @Rfna;"IRIT2;=WAT"

OUTPUT @Rfna;"MMEM:STOR:STAT 1,’MEM:STATE2.STA"

RETURN
!

Save_3: QUTPUT @Rfna;"CALC2:FORM SWR"

OUTPUT @Rfna;"INIT2;*WAT"
OUTPUT @Rfna;"MMEM:STOR:STAT 1,'MEM:STATE3.STAY
QUTPUT ©Rfna;"CALC2:FORM MLOG!

RETURN
!

Example Programs

11-39

1000 Save, 4:0UTPUT @Rfna;"SENS2:5TAT OFF"

1010 OUTPUT @Rfna;"SENS1:SWE:POIN 1601 ;*WAL"Y

1020 OUTPUT @Rfna;"INITI;*WAI"

1630 OUTPUT @Rfna;"MMEM:STOR:STAT 1,’MEM:BTATE4.S5TA*Y
1040 RETURN

1050 !

1060 Save_5:0UTPUT @Rfna;"CALC1:MARK:BWID ~3;FUNC:TRAC ON
1070 OUTPUT @Rfna;"INIT1;*WAL"

1080 OUTPUT @Rfna;"MMEM:STOR:STAT 1, 'MEM:STATEL.STA"
1080 RETURK

1100 !

1110 Save_8:0UTPUT @Rfna;"SEKS1:BWID 250 Hz;=*WAI"

1120 QUTPUT @Rfna;"SENS1:SWE:POIN 101;*WAI"

1130 OUTPUT @Rfna;"INIT1;*WAI"

1140 OUTPUT @Rfna;"MMEM:STOR:STAT 1,’MEM:STATES.S5TA’"
1150 RETURN

1160 !
117C¢ ! These six subroutines each recall one of the
1180 ! measurement setups that were stored earlier.
1190 !

1200 Load.1:DISP "Setup 1"

1210 QUTPUT @Rfna;"MMEM:LOAD:STAT 1,’MEM:STATEL1.STA’;*WAI"
1220 OUTPUT @Rfna;"INIT1;+WAIY

1230 RETURN

1240 !

1250 Load_2:DISP "Setup 2

1260 QUTPUT @Rfna;"MMEM:LOAD:STAT 1,’MEM:STATE2.STA’ ;*WAI"
1270 OUTPUT @Rfna;"INITZ2;*WAI"

1280 RETURN

1280 !

1300 Lead, 3:DISP "Setup 3"

1310 OUTPUT @Rfna;"MMEM:LOAD:STAT 1,’MEM:STATE3.STA’;*WAIL"
1320 OQUTPUT 2Rfna;"INIT2;*WAI"

1330 RETURN

134¢ !

135C Load_4:DISP "Setup 4"

1360 OUTPUT @Rfna;"MMEM:LOAD:STAT 1,’MEM:STATE4 . STA’ ;*WAI"
1370 OQUTPUT @Rfna;"INIT1;*WAI"

1380 RETURN

13e¢ !

1400 Load_5:DISP "Setup B¢

1410 QUTPUT QAfna;"MMEM:LOAD:STAT 1, MEM:STATES.STA’ ;*WAL"
1420 OUTPUT @Rfna;"INITL;*WAI"

1430 RETURN

1440 !

1450 Load_6:DISP "Setup 6"

1460 OUTPUT @Rfna;"MMEM:LOAD:STAT 1,’MEM:STATEG.STA’ ;*WAL"
1470 OUTPUT @Rfna;"INITL;*WAI"

1480 RETURN

149C ERD

11-40 Example Programs

BARCODE — Using Bar Code Reader

10 o o e e e e

20 !

30 ! IBASIC program: BARCODE - Using barcode reader

40 !

50 ! This HP 8711 IBASIC program was written for a barcode
60 ! reader, but it is not required. Sets the 8711's

I
I
I
I
I
70 ! state depending on model # of DUT being measured,
1
1
1
1
1

80 ! Expects to see BARCODE with the following format:

90 ! Model Number (6 char), space, Serial Number (5 char)
100 ! Valid Models: BPF175, BPF200, SAWi34

110 ! REV A4.02.00 930615, 3VV

120 !

130 o e e e e e e e

140 !

150 COM /Hpib/ @Rfna

160 COM /Scale/ Sc,INTEGER X,Y

170 DIM Name$[50],5tat$[50],S5can$[90],Lim$(1:3,1:5)[30],Test$(0:1
) [4]

180 INTEGER Tab,Fail _flg,G(1:4)

190 !

200 Init:!

210 Test$(0)="PASS"

220 Test$(1)="FATL"

230 ASSIGN @Rfna TO 800

240 Sc=1 ! Scales the 8711 drawing and DUT
250 X=b ! Starting X posn of 8711 plot
260 Y=3b ! o Yy o

270 Tab=38 ! Tab position for text

280 QUTPUT @Rfna;"SYST:PRES;=*0PCT"

290 ENTER @Rfna;0Opc

300 OUTPUT @Rfna;"DISP:PRGG UPP®

310 GINIT

320 GCLEAR

330 GESCAPE 1,3;G(*)

340 WINDOW G(1),G(3),G(2),G(4)

3580 QUTPUT @Rfna;"SENS1:STAT OFF;:SENS2:STAT ON¢
360 QUTPUT @Rfna;"DISP:WIND2:TRAC:Y:RPOS 9"
370 OQUTPUT @Rfna;"ABOR;:INIT:CONT OFF"

380 Setup: !

390 BEEP 500,.1

400 INPUT "Enter Operator’s Name:",Name$
410 BEEP 3000,.03

420 INPUT "Enter Station Number:",Stat$

430 BEEP 3000,.03

440 QUTPUT @Rfna;"SYST:DATE?"

450 ENTER @Rfna;Year,Month,Day

460 CALL DPraw.na ! Draw Network Analyzer.
470 Box(670,35,340,130) ! Draw text box
480 PRINT TABXY(Tab,3);"Oper: ";Name$l1,15]

Exampie Programs 11-41

430
500
510
520
530
540
550
560
570
580
5380
800
810
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820

MHZ"

830

PRINT TABXY(Tab,4);"Station: ";Stat$[1,11]
PRINT TABXY(Tab,5);"Date: ";Year;Month;Day
Meas_dev: !
LOOP
CALL Draw.dut(l)
CALL Scan_dut(Scan$,Cent$,Span$,loss$,Lim$(*))
PRINT TABXY(Tab,7):"Model: "&Scan$ii,8]
PRINT TABXY(Tab,8):"Serial: "&Scan$i8,12]
GOSUB Set_stim
DISP "MEASURING THE DEVICE"®
OUTPUT @Rfna;"ABOR; :INIT2:CONT OFF;:INIT2;*WAI"
QUTPUT @Rfna;"CALC2:MARK1 ON;MARK:FUNC MAXY
QUTPUT @Rfna;"CALCZ:MABRK1:Y?H
ENTER @Rfna;loss
PRINT TABXY(Tab,9);"Loss (dB): ";Loss
Disp_result: !
QUTPUT @Rfna;:"STAT:QUES:LIM:COND?!
ENTER @Rfna;Fail_flg
Fail_flg=BIT(Fail_flg,1) ! Bit 1 is for ch2
IF Fall_flg THEN BEEP 2100,.5
Label(Test$(Fail_flg),i25,50,2%,5,0,1)
Continue: ¢
CALL Draw_dut(0)
BEEP 300,.05
INPUT "Digconnect DUT. Measure another? (Y/n)",Ans$
EXIT IF UPC$(Ans$[1,1])="m"
Label(Test$(Fail_flg),125,50,24,5,0,0)
END LOOP
QUTPUT @Rfna;"ABOR;:INIT:CONT oOy"
STOP
i
Set_stim: ! Set Freqs and Limit lines
OUTPUT ©@Rfna;"DISP:ANN:FREQ:MGDE CSPANY

OUTPUT @Rfna;"SENS:FREQ:CENT "&Cent$&" MHZ;SPAN "&Span$g"

OUTPUT @Rfna;"DISP:WIND2:TRAC:Y:RLEV

", -PROUND{VAL(Loss$>,1) ;" "DB"

840
850

)&”;

860

$(1,

870

$(I,

880
890
900
310
920
830
940

FOR I=1 TO 3 ! SET LIMIT LINES
CUTPUT @Rfna;"CALC2:LIM:SEGM"&VAL$(I)& ":TYPE "&Lim$(I1,1
STAT ON“
OUTPUT QRfna;"CALC2:LIM:SEGM"&VAL$(I)& ":FREG:STAR "&Lim
2)&" MHZ;STOP “&Lim$(I,3)&" MHZ"

OUTPUT @Rfna;"CALC2:LIM:SEGM"&VAL$(I)& “:AMPL:STAR "&Lim

4&" ;STOP "gLim$(I,B)
REXT I
OQUTPUT @Rfna;"CALC2:LIM:DISP ON;STAT ON"
RETURN
END
Do#dRhdddsdt SUBPROGRAMS #HH####4E
i

Draw_na:SUB Draw_na

11-42 Example Programs

950

960

870

980

980

1000
1010
1020
1030
1040
1050
1060
1070
1080
1080
1160
1110
1120
1130
1140

! This draws HP 8711 at

Box(231,50,460,100)
Box(231,50,462,102)
Box{125,50,180,72)
Box{125,50,182,75)
FOR I=192 T0 82 STEP ¢
Box(235,I,15,5)
NEXT I
Box(285,88,15,7)
Box(375,88,105,12)
Box(375,88,75,4)
Circle(365,60,18)
Circle(300,15,10)
Circle{410,15,10)
Box(15,20,7,10)
Circle(15,33,4)

1
‘

1
H

origin X,Y
Frame

CRT

Keys

BEGIN
Drive

Knob
Out

in
Switch

Label("RF 0UT",300,28,8,5,0,1)
Label("RF IN",410,28,8,5,0,1)

SUBERD

1180 Draw_dut:SUB Draw_dut(INTEGER Pen)
f This connects DUT to HP 8711

1160
1170
1180
1180
1200
1210
1220
1230

PEN Pen

Connect (300,15,320,-20,0)

Box(355,-20,70,15)

Connect(410,15,390,-20,0)

PEN 1

SUBEND
I

1240 Scan.dut:SUB Scan_dut(Scan$,Cent$,Span$,Loss$,Lim$(*))

1250
1260
1270
1280
1220
E HERE
1300
1310
1320
1330
1340
1360
1360
1370
1380
1380
1400
1410
1420
1430
1440

LOOP
Invalid=0
Scan$="BPF175 12345"
BEEP 50G, .05

! Default model/serial

INPUT "Connect and scan the Device.",Scan$

IF LEN(Scan$)<12 THEY
Invalid=1

ELSE
Model$=Scan$fl,6]

1Valid device needs

SELECT UPC$(TRIMS$ (Model$))
CASE "BPF175","BPF177"

RESTORE F1
CASE "BPF200"

RESTODRE F2
CASE "SAW134"

RESTDRE F3
CASE ELSE

Invalid=1
END SELECT

EXD IF

! SCAN BARCOD

12 char.

Example Programs 11-43

1450 EXIT IF NOT Invalid

1460 DISP Scan$;" <<--is INVALID! Try again."
______ 1470 BEEP 1500, .2
1480 WAIT 1

1490 END LOGP
1500 BEEP 3000,.03
1510 READ Cent$,Span$,Loss$, Lim$(*)

1520 ! Limit lines format: Center, Span, Less, (LIM TYPE, STRT,
STP, STRTAB, STP4B)
1530 F1:DATA 175,250,2 1 175 MHz BPF

1540 DATA YLMIN", 160,190,-5,-5

1550 DATA "LMAX", 100,140,-50,-9

1560 DATA VYLMAX", 210,240,-7,-30C

1570 F2:DATA 200,100,1 ! 200 MHz BPF
1580 DATA VLMIN', 196,204,-3,-3

1580 DATA VYLMAX", 180,190,-40,-10C

1800 DATA VYLMAX", 210,220,-10,-40

1610 F3:DATA 134,40,22 1 134 MHz SAW BPF
1620 DATA VYEMIN'™, 128,140,-27,-27

1630 DATA VEMAX", 123,125,-65,-30

1640 DATA VYIMAX", 143,145,~30,-65

1650 SUBEND

1660 !

1670 Box:SUB Box(¥pos,Ypos,isize,Vsize)
1680 CoM /Scale/ Sc,INTEGER X.,Y

1690 MOVE X+(Xpos~Xsize/2)*Sc,Y+(Ypos-Ysize/2)*Sc
1700 RECTANGLE Xaize*3c,YasizexSc*1.79 ! 1.79 = 8711 Pixel H:¥ Ra
tio

17:10 SUBEND

1720 !

1730 Circle:SUB Circle(Xpos,Ypos,Radius)
1740 C0M /Scale/ Sc,INTEGER X,Y

1780 MOVE X+Xpos*Sc,Y+Ypos*Sc

1760 POLYGON Radius%*Sc,16,16

1770 SUBREND

1780 !

1790 Connect:SUB Connect(X1,¥1,X2,Y2,How)
1800 COM /Scale/ Sc,INTEGER X,Y

1810 MOVE X+X1%Sc,Y+Y1sSc

1820 SELECT How

1830 CASE 1 !...diagonal
1840 DRAW X+X2#Sc,Y+Y2#Sc
1850 CASE 0O

1860 DRAW X+X1%Sc,Y+Y2%Sc
1870 DRAW X+X2#8c¢,Y+Y2#Sc
1880 CASE -1

1890 DRAW X+X2%Sc,¥+Y1%Sc
1900 DRAW X+X2%Sc,¥+Y2%Sc

1810 END SELECT
1920 SUBEND
1930 !

11-44 Example Programs

1940 Label:SUB Label(Text$,Xpos,Ypos,Size,Lorg,Ldr,Pen)

1880
1960
1970
1980
1890
2000
2010
2020
2030
2040
2050
2060
2070
2080
2050

COM /Scale/ Sc,INTEGER X,Y
LORG Lozg
LDIR Ldr
CSTZE Size*S8c,1
MOVE X+Xpos*3c,Y+Ypos*Sc
PEN Pen
LABEL Text$
PEN 1

SUBEND

i

Amp :SUB Amp(Xpos,Ypos,Size) ! Draws > Triangle
COM /Scale/ Sc,INTEGER X,Y
MOVE X+(Xpos+S5Size/2)#*Sc,Y+Ypos*Sc
POLYGON Size#*3¢,3,3

SUBEND

Example Programs 11-45

STATS — Using Bar Code Reader

10

20

30

40

50

60

70

80

80

100
110
120
130
140
150
160
170
180
180
200
210
220
230
240
280
260
270
280
280
300
310
320
330
340
360
360
370
380
380
400
410
420
430
440
450
460
470
480
490

! IBASIC program: STATS - Collects statistics.

| This HP 8711 IBASIC program uses a barcode reader.
! Displays running average of selected BPF passbands,

! Expects to see BARCODE with the following format:

! Model Number (6 char), space, Serial Number (5 char)
! Valid Models: BPF175, BPF200, SAWi34

! REV A.01.00 930815, JVV

E
£
3
E
k
! Finds linear avg of log data (ie Avg of 1dB & 5dB =3)
!
!
1
!
1

COM /Hpib/ @Rfna

COM Csub_loaded

DIM A{1:1601),M(1:1601)

INTEGER Points . N,I,Chan

Points=201 ! # of trace points

Chan=2

ASSIGN @Rfna TO 800

IF NOT Csub_loaded THEN
LOADSUB Read_fdata FROM "XFER:MEM 0,0V
LOADSUB ¥Write_fmem FROM "XFER:MEM 0,0V
Csub_loaded=1

END IF

QUTPUT @Rfna;"SYST:PRES;*0PCT"

ENTER @Rfna;0Opc

QUTPUT @Rfna;"DISP:PROG UPPY

GINIT

GCLEAR

QUTPUT @Rfna;'"DISP:ANN:MESS:STAT O¢

QUTPUT @Rfna;"SENS1:STAT OFF;:SENS2:STAT ON"

QUTPUT @Rfna;"SENS2:SWE:POIN “:Points ! points

QUTPUT @Rfna;"DISP:WIND2:TRAC:Y:RP0OS 9;PDIV 1 DB;*QPC?"

ENTER @Rfna;0pc
N=0

Setup: !

LOaP
GOSUB Scan_next
O8N KEY 1 LABEL " AVER THIS DATA" GOSUB Avg_this
0¥ KEY 3 LABEL "SCAN ANOTHER" GOSUB Scan_next
0% KEY 5 LABEL "DORE" GDSUB Exit
Loop
DISP M"SELECT A SOFTKEY."
WAIT 1
DISP
WAIT .3

11-46 Example Programs

500
510
520
530
540
BBO
560
570
580
590
800
810
820
630
640
850
660
870
6880
690
700
710
720
730
740
H
750
760
770
780
790
ATA"
800
810
820
H
830
840
850
860
0n;
870
880
880
900
210
220
230
240
ATA"
250

END LOOP
END L0OAQP
i
Exit: 1
CLEAR SCREEN
DISP "PROGRAM PAUSED!™
LOCAL @Rfna
PAUSE
RETURN
|
Scan_next: !
LAgP
Scan_dut(Model$,Serial$,Cent$,Span$,Loss$)
IF Model$="ABORT" THEN GOTO Exit
IF KOT N THEN Curr_model$=Model$
EXIT IF Model$=Curr_model}
DISP "Inconsistent Model #, Try again!”
BEEP 2100,.1
WAIT 1
END LOOP
CLEAR SCREEN
PRINT TABXY(1,4);"Device currently under test:"
PRINT "Model # ";Model$;" Serial # ";Serial$
PRINT TABXY(i,6);"# Lvg’d:";N
PRINT TABXY{(:,7);"Status of Serial # "&Serial$&": MEASURING
GOSUB Set_stim
RETURN
]
Avg_thig: !
PRINT TABXY{1,7);"Status of Serial # "&Serial$&": READING D
Read_fdata(Chan,A(x))
N=N+1
PRINT TABXY{i,7);"Status of Serial # “&Serial$Z": AVERAGING
IF N=1 THEN
MAT M= A
OUTPUT @Rfna;"TRAC CH2SMEM,CH2SDATA"
OUTPUT @Rfna;"CALCZ2:MATE (IMPL);:DISP:WIND2:TRACI ON;TRAC2
*WAIY
OUTPUT @Rfna;"ABCR;:INIT2:CONT ON;*WAL"
ELSE
FOR I=1 TO Points
M(D)=(N-1) /N«M(I)+A(I) /N
NEIXT I
END IF
PRINT TABXY(:,6);"# Averaged:";N
PRINT TABXY(1,7);"Status of Serial # "&Serial$e': WRITING D
Write_fmem(Chan,K (%))

Example Programs

11-47

960 PRINT TABXY(1,7);"Status of Serial # "%Serial$&": AVG COMPL

ETE"

970 GOSUB Scan_next
980 RETURN

990 !

1000 Set_stim:! Set Fregs

1010 OUTPUT @Rfna;"DISP:ANN:FREQ:MODE CSPAN"

1020 OUTPUT @Rfna;"SENS:FREQ:CENT "&Cent$&" MHZ;SPAN "&Span$t"
MEZ"

1030 OQUTPUT @Rfna;"DISP:WIND2:TRAC:Y:RLEV ~"%Lcss$&" DB;x0PCT"
1040 ENTER @Rfna;0pc

1050 RETURN

1060 ¢t
1070 EHND
1080 !
1090 ' ####4E##E SUBPROGRAMS #idudidds
1100 ¢t
1110 Scan_dut:SUB Scan_dut{Model$,Serial$,Cent$,Span$,Loss$)
1120 ALLOCATE Scan$ [80]
1130 LOOP
1140 Invalid=0
1150 Scan$="ABORT"
1160 Scan$="BPF175 12345" 1####### These 3 lines for demo on
ly
1170 S$=VALS (RND*1.E+8) tH####ER Generates random S/N
1180 Scan$l8,12]1=5¢[3,7] ‘'####4## Delete all to enable abor
t.
1180 BEEP 50O, .05
1200 INPUT "Connect & scan DUT or leave blank to exit.",Sca
n$!SCAN BARCODE
1210 IF LEN(Scan$)<12 THEN ! Valid device needs 12 char,
1220 Invalid=1
1230 ELSE
1240 Model$=Scan$(1,6]
1250 SELECT UPC$(TRIM$ (Model$))
1260 CASE “BPF175","BPF177"
1270 RESTORE F1
1280 CASE “"BPF200"
1290 RESTORE F2
1300 CASE “SAW134"
1310 RESTORE F3
1320 CASE ELSE
1330 Invalid=1
1340 END SELECT
1350 END IF

.. 1360 EXIT IF NOT Invalid

1370 IF POS(UPC$(Scan$),"ABORT") THEN
138¢ Model$="ABORT"
1380 SUBEXIT
1400 END IF
1410 DISP Scan$;" <<--is INVALID! Try again.®

11-48 Example Programs

1420
1430
1440
1450
1460
1470
1480

BEEP 1500, .2
WAIT ¢
END LOOP
BEEP 3000, .03
Serial$=Scan$[8,12]
READ Cent$,Span$,loss$
! Data format: Center, Span, Loss

1490 F1: DATA 175,50,2 ! 175 MH=z BPF

1600 F2: DATA 200,12,1 ! 200 MH=z BPF

1510 F3: DATA 134,15,22 ! 134 MH=z SAW BPF
1520 SUBEND

Example Programs 11-49

DATALOG — Using Bar Code Reader

L B

20 1

30 ' IBASIC program: DATALOG -~ Logs trace data

40

BG¢ ! This HP 8711 IBASIC program uses a barcode reader.

60 ! Stores ASCII trace data in internal memory until full.

1
1
{
!
!
70 ! Then copies stored files to disc.
1
]
1
i
i

80 ! Expects to see BARCODE with the following format:
a0 ! Model Number (6 char), space, Serial Number (5 char)
100 ! Valid Models: BPF175, BPF200, SAWi34

110 ! REV A.01.00 930615, JVV

120 !

130 1 om0 d n m m m m m
140 !

150 Init: !

160 CoM /Hpib/ @Rfna

170 ¢

180 IF POS{SYSTEM$("SYSTEM ID"),"HP 871") THEN

190 ASSIGN @Rfna TO 800

200 ELSE

210 ASSIGN @Rfna TO 716

220 ABORT 7

230 CLEAR 718

240 END IF

250 1

260 QUTPUT @Rfra;"SYST:PRES;*0PCT"

270 ENTER @Rfna;0pc

280 QUTPUT @Rfna;"DISP:PROG UPP"

290 GINIT

300 GCLEAR

310 GUSUB Warning! ¥ay be deleted

320 OUTPUT @Rfna;"DISP:ANN:MESS:STAT o

330 QUTPUT @Rfna;"SENS1i:STAT OFF;:SENS2:STAT ON®
340 OUTPUT @Rfna;"SENS2:SWE:POIN 201" ! 201 points
360 OUTPUT @Rfna;"DISP:WIND2:TRAC:Y:RFOS 9

360 QUTPUT @Rfna;"MMEM:MSIS ’MEM:’"

370 OUTPUT @Rfna;"MMEM:INIT ’MEM:’,DOS"

380 QUTPUT @Rfna;"MMEM:STOR:STAT:IST OFF;CORR OFF;TRAC OFF;*0PC?"
390 ENTER @Rfna;0pc

400 Setup: !

410 LOOP

420 GOSUB Scan_next

430 ON KEY 1 LABEL "STORE THIS DATA" GOSUB Stor.mem
440 0N KEY 2 LABEL "STCRE MEM TO DISK" CALL Store.disk
450 0¥ KEY 3 LABEL "SCAN ANOTHER" GOSUB Scan._.next
460 0¥ KEY 5 LABEL "DONE" GOSUB Exit

470 LOOP

480 DISP “SELECT A SOFTKEY"

490 WAIT ¢

11-50 Example Programs

500 DISP

510 WAIT .3

520 END LOOP

530 END LOOP

540 !

550 Exit: !

560 Store_disk

570 CLEAR SCREEN

580 DISP YPROGRAM PAUSED!M

590 LOCAL @Rfna

600 PAUSE

610 RETURN

620 !

630 Scan_next: !

840 Scan_dut(Model$,Serial$,Cent$,Span$,Loss$)

650 IF Model$="ABORT" THEN GOTO Exit

660 CLEAR SCREEN

670 PRINT TABXY(1,3);'Device currently under test:"

680 PRINT

690 PRINT "Model # ";Model$:" Serial # ";Serial$

700 PRINT TABXY¥(1,7):"Status of Serial # "ESerial$g": MEASURING
710 GOSUB Set_stim

720 RETURN

730 !

740 Stor_mem: H

T80 PRINT TABXY(1,7);"Status of Serial # "&Serial$&”: STORING T
0 RAM®

760 Store_ram(Model$,8eriall)

770 PRINT TABXY(1,7);"Status of Serial # "&Serial$i’: STCRING D
ONE ¢

780 GOSUB Scan_next

790 RETURN

800 !

810 Set.stim: | Set Fregs

820 OUTPUT @Rfna;"DISP:ANN:FREQR:MODE CSPANY

830 OUTPUT @Rfna;"SENS:FREQ:CENT "#Cent$&" MHZ;SPAN "&Span$g"
MHZY

840 QUTPUT @Rfna;"DISP:WINDZ:TRAC:Y:RLEV -"&Loss$&" DB;xDPC?Y
850 ENTER @Rfna;0Opc

860 RETURN

870 !

880 Warning: !

890 BEEP 3000,.3

900 PRINT TABXY(15,4) ;"WARKING!"

910 PRINT "This program will initialize the INTERNAL memory."
920 PRINT "All internally saved files will be lost!"

930 PRINT

940 PRINT "Do you wish to continue? (y/E)}"

950 INPUT “Continue?",Ans$

960 CLEAR SCREEN

Exampie Programs

11-51

270
280
220 !

IF UPC${(Ans$[1,11)="Y" THEN RETURN

1000 | ##udd#s#s SUBPRCGRAMS ##d####nid

1610 !

1020 Scan_dut:SUB Scan_dut(Model$,Serial$,Cent$,Span$,Loss$)

1030
1040
1050
1080
1070
1080
1030
1166
1110

ALLOCATE Scan$[80]
Loce

Invalid=0

Scan$="ABORT"

Scan$§="BPF175 12345" 1 #§#####4# These 3 lines Ffor demo only
S$=VAL$(RND*1 .E+9) | ####### Generates random S/N
Scan$[8,127=8$[3,7] ' ####### Delete all to enable abort.
BEEP 500, .05

INPUT "Connect & scan DUT or leave blank to exit.',Scan$

!SCAN BARCGDE

1126
1130
1140
115C
116C
117¢
118C
118C
1200
1210
1220
1230
1240
1250
1260
1270
1280
1200
1300
1310
1320
1330
1340
1360
1360
1370
1380

IF LEN(Scan$)<i2 THEN ! Valid device needs 12 char.
Invalid=i
ELSE
Model$=Scan$[1,6]
SELECT UPCS$(TRIMS (Modei$))
CASE “BPF1i75% ,"BPF177"
RESTORE F1
CASE YBPF200%
RESTORE F2
CASE YSAWi34"
RESTORE F3
CASE ELSE
Invalid=1
END SELECT
END IF

EXIT IF NOT Invalid

IF POS(UPC$(Scan$),"ABORT") THEN
Model$="ABORT"
SUBEXIT
END IF
DISP Scan$;" <<--is INVALID! Try again.”
BEEP 1500,.2
WAIT 1

END LooP

BEEP 3000, .03
Serial$=Scan$[8,12]
READ Cent$,Span$,Loss$

1390 ! Data format: Center, Span, Loss

1400 F1:DATA 175,300,2 ! 175 MHz BPF
1410 F2:DATA 200,100,1 ! 200 MHz BPF
1420 F3:DATA 134,30,22 ! 134 MHz SAW BPF
1430 SUBEND

1440 1!

1450 SUB Store_ram(Model$,Serial$)

1460

COM /Hpib/ @Rfna

11-52 Example Programs

1470
1480
1490
1800
1510
1520
1530
1540
1550
1560
1570
1680
1590
1600
1610
1620
1630
1640
1650
1660
1870
1680
1680
1700
1710
1720
1730
1740
1750
1760
i770
1780
1790
1800
1810
1820
1830
1840
1880
1860
1870
1880
1890
1800
1910
1920
1930
1940
1850

Id$=Model$[3,4]1&" "&Serial$! 2 unique chars + Ser
ALLOCATE Err$180]
DISABLE
REPEAT
QUTPUT @Rfna;"*CLSY
GUTPUT €Rfna;"MMEM:MSIS ’'MEM:’"
GUTPUT €Rfna;"MMEM:STOR:TRAC CH2FDATA, > "&Id$&"’ ;»WAL"
QUTPUT @Rfrna;"SYST:ERR?" .
ENTER @Rfna;Err$
SELECT VAL{Err$)
CASE 0! No Problem
CASE -254! Internal Mem full
CALL Store_disk
CASE -257! dupl file name
OUTPUT @Rfna;""MMEM:DEL *"&Id$&" 7 ;+WAIY!ERASE OLD
CASE ELSE
BEEP 2000,.5
DISP Err$;
INPUT " Fix, Press ENTER",ins$
ERD SELECT
UNTIL VAL(Err$)=0
ENABLE

SUBEND

SUB Store_disk

COM /Hpib/ @Rfna
ALLOCATE Err$[80]
BEEP 700,.1
DISP "Standby: Transferring internal files to disk.®
Logp
QUTPUT @Rfna;"*CLS"
OUTPUT @Rfna;"MMEM:COPY *#%.%’ , *INT:?;*WAI"
OUTPUT @Rfna;"SYST:ERR?"
ENTER @Rfna;Err$
EXIT IF NOT VAL{Err$)
GOSUB Trap_err
END LOOP
OUTPUT @Rfna;"MMEM:MSIS *MEM:’;DEL *#,%*"
SUBEXIT

Trap_err: !

IF VAL(Err$)=-250 THEN SUBEXIT! no file to xfer
BEEP 2000, .5

CLEAR SCREEN

PRINT TABXY(1,4);"DISK ERROR DETECTED"

PRINT "% "EErr$&" soexd

INPUT "Fix above problem, then press ENTER",Ans$
CLEAR SCREEN

SUBEND

Example Programs

11:53°

s
e
M
HA
A

I
m

TR
MNWWMN

I
I

TN
HMWWMWM

BPF200 00059
BPF200 6077
SAW134 00707

M

UAREAAE

MMWMWMWW

MMMMWWMN
WNMMWWMN
WMWMNWW
l

O
LA

o

I

RAMREN

RN
BIFAAAD
{111
Qi

QI
BN

WMMWWWWWNWWMWWWM
WWMWMWWMWWWMWWWM

LENE CORRIGAN

M
LI

|
|

JNi

[-

Index

R, L
A typographical, 1-3
ABORT, 8-8
active controller, 2-7 D
ADJ_110 example program, 11-5 DATA_EX'P
annotations example program, 11-1
custom, 7-5 DATA_INT
arrays, -3 example program, 11-1
ASCII file, 4-2 DATALOG
ASCII word processors, 5-2 example program, 11-4
ASSIGH, 2-3 data transfer, 8-15
AUTOSTART, 4-3 debugging, 6-1
AUTOSTART programs, 3-1 deleted text
to recall, 5-9
B deleting text, 5-8
BARCODE disk
examnple program, 11-4 to select, 4-2
bar codes displaying text, 7-4
sample, 11-54 display partitions, 5-10, 7-1
binary file, 4-2 DOWNLOAD
breakpoints example program, 1i-1
setting, 6-2 downloading programs, 8-17
buffer DRAWS71X
HP-1B, 2-2 example program, 11-2
program, -1 drawing figures, 7-7
hus DUALCTRL
external, 8-11 ‘ example program, 11-2
internal, 811
bus management E
general, 8-5 echo
c
character eniry, 5-7
CLEAR, 8-7 :
codes HP BASIC, 5-2
bar, 11-54 errors
continue command, 3-1 displaying, 6-4
control example program
pasging, 8-10 ADJ. 116, 11.5
controller BARCODE, 11-4
active, 2-7 DATA_EXT, 11-1
synchronization, 814 DATA INT, 11-1
system, 2-7 DATALOG, 114
controller, external DOWNLOAD, 11-1
interfacing with, 8-13 DRAWSTIX, 11-2
conventions DUALCTRL, 11-2

index-1

REPORT, 11-2
STATS, 11-4
TRICTRL, 11-2
UPLOAD, 11-3
USERBEG, 11-3
USERBEGI, 11-3
USERBEGZ, 11-3
USER..BIT, 11-3
USERKEYS, 11-3
external bus, §-11
external controller
interfacing with, 8-13
external keyboard, 3-2, 5-5

F

file
ASCIE, 4.2
binary, 4-2

G
GET, 4-1
graphics, 7-5
SCPI commands, 7-11

H
HP BASIC editor, 5-2
HP-IB

general structure, 8-3
HP-1B buffer, 2-2
HP-IB device selectors, 8-1
HP-IB echo, 2-9

H
IBASIC

synchronize with an external controller, 8-14
5-10

IBASIC editor, 5-3
IBASIC operations, 2-6

instrument preset, 2-8
internal bus, 811

K

keyboard

external, 3-2, 5-5
keyboard overlay, 3-2
keystroke recording, 2-1

L

label window, 5-7
LOAD, 4-1
local, 8-7
local lockout, 8-6

Index-2

lockout
local, 8-6

mesgsage windows, 7-5
mnermonics
SCPI, 2-3

4]

operations
IBASIC, 2-8

OUTPUT, 2-3

overview, 1-2

P

parallel port, 8-3
partitions

display, 5-10, 7-1
PASS CONTROL, 8-12
passing control, 810
PAUSE, 3-2
pausing a program, 3-2
pOp-Up messages, -5
ports

serial and parallel, 8.3
(BRESER), 28
preset operation, 2-8
program

to pause, 3-2

to recall, 4-3

to run, 3-1

to stop, 3-3
program buffer, 2-1
program recording, 2-1
programs

downloading and uploading, 8-17

Q
guerying variables, 8-16

R

READTO, 8-4
recalling a deleted line, 5-8
11 n, 4-3
4-3

recording

keystroke, 2-1
recording programs, 2-1
reference material, 1-1
remote, 8-6
renumbering, 5-9

REPORT

example program, 11-2
RE-SAVE, 4-1

RE-STORE, 4-1
RUN, 3-1
running a program, 3-1

s

sample bar codes, 11-54

(SAvE RECALD),
SCPI mnemonics, 2-3
selecting a disk, 4-2
serial poll, 8-10
serial port, 8-3
sel'vice requests, 8.8
setting variables, 8-16
SRQs, 8-8
STATS

example program, 11-4
status information, 814
STOP, 3-3
stopping a program, 3-3
STORE, 4-1
strings, 6-3
subprograms, 9-1
synchronization, 2-6, 8-14
system controller, 2.7

T

template
keyboard, 3-2
text
to display, 7-4

tir

ning, 2-6

transferring data, 8-15
TRICTRL

example program, 11-2

trigger, 8-7

typographical conventions, 1-3

u

UPLOAD

example program, 11-3

uploading programs, 8-17
USERBEG

example program, 11-3

USERBEG1

example program, 11.3

USERBEG2

example program, 11-3

USER._BIT

example program, 11-3

USERKEYS

example program, 11-3

v

variables, 6-2

w

wi

setting and querying, 8-16

ndow
label, 5-7

word processors, 5-2
WRITEID, 8-4

index-3

